Phytoremediation

Instructions, which will open in a new tab, for the use of the tables are here.

Scientific NameCommon NameImageContaminantsAccumlation QuantityAccumlation TypeSource for PhytoNotes
Abutilon theophrasti Velvet leafCadmiumAccumulator1) Hammami, Hossein, et al. “Weeds Ability to Phytoremediate Cadmium-Contaminated Soil.” International Journal of Phytoremediation, vol. 18, no. 1, 2015, pp. 48–53., doi:10.1080/15226514.2015.1058336.
Acacia farnesianaSweet acaciaArsenicAccumulatorPhytostabilization1) Alcantara-Martinez N, Guizar S, Rivera-Cabrera F, Anicacio-Acevedo BE, Buendia-Gonzalez L, Volke-Sepulveda T. Tolerance, arsenic uptake, and oxidative stress in Acacia farnesiana under arsenate-stress. Int J Phytoremediation. 2016;18(7):671-678. doi:10.1080/15226514.2015.1118432
Acacia mangiumForest MangroveLead AccumulatorPhytostabilization1)(Phyto Textbook) Meeinkuirt, W., Pokethitiyook, P., Kruatrachue, M., Tanhan, P., and Chairyarat, R. 2012. Phytostabilization of a Pb-contaminated mine tailing by various tree species in pot and field trial experiments. International Journal of Phytoremediation 14 (9), pp. 925-938.
Acacia pycnanthaGolden WattleCopper, Zinc, LeadAccumulatorPhytostabilization1) Nirola R, Megharaj M, Aryal R, Naidu R. Screening of metal uptake by plant colonizers growing on abandoned copper mine in Kapunda, South Australia. Int J Phytoremediation. 2016;18(4):399-405. doi:10.1080/15226514.2015.1109599
Acanthus ilicifolius L.Holly-leaved acanthusCadmiumAccumulatorPhytostabilization1) Shackira AM, Puthur JT. Enhanced phytostabilization of cadmium by a halophyte-Acanthus ilicifolius L. Int J Phytoremediation. 2017;19(4):319-326. doi:10.1080/15226514.2016.1225284
Acer rubrum Red Maple RedMapleRedMaple.jpgCesium, PlutoniumAccumulatorN/A1) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 2) http://www.flickr.com/photos/35518067@N06/3350103424/(Photo Source) Hardiness Zones: Zones 3 - 9NNN
Acer saccharinum Silver MapleSilverMapleSilverMaple.jpgPolychlorinated Biphenyl (PCB), Trichloroethylene (TCE)  and by-products, Vinyl ChlorideN/AN/A1) Ferro, A., Chard, B., Gefell, M., Thompson, B., and R. Kjelgren. 2000. "Phytoremediation of Organic Solvents in Groundwater: Pilot Study at a Superfund Site". In: G. Wickramanayake, A. Gavaskar, B. Alleman, and V. Magar (eds.) Bioremediation and Phytoremediation of Chlorinated and Recalcitrant Compounds, p461-466. Battelle Press, Columbus, Ohio.; Ferro, A., Kennedy, J., Kjelgren, R., Rieder, J., and S. Perrin. 1999. "Toxicity Assessment of Volatile Organic Compounds in Poplar Trees". International Journal of Phytoremediation. 1(1): 9-17 2) http://www.flickr.com/photos/piwo/2504039909/ (Photo Source)Salt Tolerant: Moderately high. Roots: Shallow, very, wide spreading, fibrous. Qualities: Fastest growing native maple. Prefers wet/saturated conditions. Full to part sun.Used for the fall color. Hardiness Zones: 3 - 9NNN
Achillea millefolium YarrowYarrowYarrow.jpgCadmiumAccumulatorN/A1) Institute for Environmental Research and education (IERE). (2003 January). Vashon Heavy Metal Phytoremediation Study Sampling and Analysis Strategy (DRAFT). http://www.superorg.net/archive/proposal/plant_species_phyto.pdf 2)http://www.flickr.com/photos/arthur_chapman/4847486547/(Photo Source)Perennial aromatic herb native to the NW. Hardiness: Zones 3-10NNN
Acorus calamusSweet Flag SweetFlagSweetFlag.jpgAtrazineAccumulator of Iron, and Manganese. TolerantRhizofiltration, Phytodegradation1) University of Minnesota Sustainable Urban Landscape Information Series. http://www.sustland.umn.edu/design/water4.html 2) http://www.flickr.com/photos/samorini/3833808196/ (Photo Source) 3) (Phyto Textbook) Marecik, R., Bialas, W., Cyplik, P., Lawniczak, L., and Chrzanowski, L. 2012. Phytoremediation Potential of Three Wetland Plant Species Toward Atrazine in Environmentally Relevant Concentrations. Polish Journal of Environmental Studies. 21 (3), pp. 697-702. 4) (Phyto Textbook) WAng, Q., Zhang, W., Li, L., and Xiao, B. 2012. Phytoremediation of atrazine by three emergent hydrophytes in a hydroponic system. Water Science and Technology66 (6), pp. 1282-1288.Iron (Fe), Manganese (Mn), and sulfides introduces oxygen into the water to oxidize materials to purify the water perennial wetland. Cold hardiness zones: 5 - 11NNN
Aeluropus lagopoidesMangrove grassCadmium, Copper, Lead, ArsenicAccumulatorPhytostabilization1) Abbas ZK. Rhizospheric soil enzyme activities and phytominimg potential of Aeluropus lagopoides and Cyperus conglomeratus growing in contaminated soils at the banks of artificial lake of reclaimed wastewater. Int J Phytoremediation. 2017;19(11):1017-1022. doi:10.1080/15226514.2017.1319326
Agapanthus africanusLily-of-the-NilePetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Perennial, Bulb, Fern. USDA plant hardiness zones 9 to 11.NNN
Agrostis capillarisCommon Bent, Colonial Bent, BrowntopCopperTolerant1) (Phyto Textbook) Bes, C. M., Jaunatne R., and Mench M. 2013. Seed bank of Cu-contaminated topsoils at a wood preservation site: impacts of copper and compost on seed germination. Environmental Monitoring and Assessment 185 (2), pp. 2039-2053.
Agrostis capillaris L.BentgrassAgrostis stoloniferaBentgrass.jpgAluminum, Arsenic, Lead, Manganese, ZincAccumulator, HyperaccumulatorN/A1) Phytoremediation of Radio-nuclides. Dushenkov et al. 1998, Negri and Hinchman 2000, Huang et al. 1998, et al. 1997, Negri and Hinchman 2000, Dushenkov et al. 1998. http://rydberg.biology.colostate.edu/Phytoremediation/2000/Lawra/BZ580.htm-zinc 2) The University of Texas. http://wildflower.org/explore/ 3) http://www.flickr.com/photos/plant_diversity/3820997510/(Photo Source)Grass or Forb species able to accumulate radionuclides. Hardiness zone 4-8. NNN
Agrostis castellanaHighland Bent GrassAluminum, Arsenic, Lead, Manganese, ZincAccumulatorN/A1) McCutcheon & Schnoor 2003, Phytoremediation. New Jersey, John Wiley & Sons, page 898.Origin Portugal.NNN
Agrostis delicatulaBentgrass, Creeping BentgrassArsenic, Lead, Copper, Manganese, ZincAccumulatorPhytostabilization1) (Phyto Textbook) Gomes, P., Valente, T., Pamplona, J., Sequeira Braga, M. A., Pissarra, J., Grande Gil, J.A., and De La Torre, M.L. 2013. Metal uptake by native plants and revegetation potential of mining sulfide-rich waste-dumps. International Journal of Phytoremediation 16, pp. 1087-1103.
Agrostis exarata Spike BentgrassArsenic, Lead, CesiumAccumulator, HyperaccumulatorN/A1) The University of Texas. http://wildflower.org/explore/Perennial clump grass, 3.5 ft tall, with long, delicate branches again toward the top. Hardiness Zones 7-10 NNN
Agrostis scrabraRough BentgrassRoughBentgrassRoughBentgrass.jpgLead, CesiumHyperaccumulator, AccumulatorN/A1) The University of Texas. http://wildflower.org/explore/ 2) http://www.flickr.com/photos/plant_diversity/3851734246/(Photo Source)Replace annually NNN
Agrostis tenuis Colonial BentgrassAluminum, Arsenic, ManganeseAccumulator, HyperaccumulatorPhytostabilization1) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. 2) (Phyto Textbook) Gomes, P., Valente, T., Pamplona, J., Sequeira Braga, M. A., Pissarra, J., Grande Gil, J.A., and De La Torre, M.L. 2013. Metal uptake by native plants and revegetation potential of mining sulfide-rich waste-dumps. International Journal of Phytoremediation 16, pp. 1087-1103. H-1000 Milligrams per kilogram of dry weight. Four records of plants. Hardiness zone 3-10.NNN
Aizoon hispanicum L.Spanish aizoonLead, Zinc, Copper ,CadmiumAccumulatorPhytoextraction, phytostabilizationMidhat L, Ouazzani N, Esshaimi M, Ouhammou A, Mandi L. Assessment of heavy metals accumulation by spontaneous vegetation: Screening for new accumulator plant species grown in Kettara mine-Marrakech, Southern Morocco. Int J Phytoremediation. 2017;19(2):191-198. doi:10.1080/15226514.2016.1207604
Allium schoenoprasumChivesChivesChives.jpgCadmiumHyperaccumulator, AccumulatorN/A1) Khadka, U., Vonshak, A., Dudai, N., Golan-Goldhirsh, A. (2003), Response of Alliium schoenoprasum to Cadmium in hydroponic growth medium. In COST Action 837 “Workshop on Phytoremediation of toxic metals.” Stockholm, Sweden, June 12-15, 2003. Retrieved March 10, 2004 from http://lbewww.epfl.ch/COST837/abstracts_stockholm/posters.pdf 2) http://www.flickr.com/photos/virgomerry/11225608/ (Photo Source)Perennial onion relative. An agricultural study that was done showed that cadmium was accumulated in roots and leaves. Hardiness zone 3-9.NNN
Aloe barbadensisAloeLead, Total petroleum hydrocarbonsAccumulatorPhytoextractionEscobar-Alvarado LF, Vaca-Mier M, López-Callejas R, Rojas-Valencia MN. Efficiency of Opuntia ficus in the phytoremediation of a soil contaminated with used motor oil and lead, compared to that of Lolium perenne and Aloe barbadensis. Int J Phytoremediation. 2018;20(2):184-189. doi:10.1080/15226514.2017.1365332
Althea rosea cavanHollyhockNickelAccumulator, HyperaccumulatorPhytoextraction1) Cay S, Uyanik A, Engin MS, Kutbay HG. Effect of EDTA and Tannic Acid on the Removal of Cd, Ni, Pb and Cu from Artificially Contaminated Soil by Althaea rosea Cavan. Int J Phytoremediation. 2015;17(1-6):568-574. doi:10.1080/15226514.2014.935285 2) Khan WU, Yasin NA, Ahmad SR, Ali A, Ahmed S, Ahmad A. Role of Ni-tolerant Bacillus spp. and Althea rosea L. in the phytoremediation of Ni-contaminated soils. Int J Phytoremediation. 2017;19(5):470-477. doi:10.1080/15226514.2016.1244167
Alyssum muraleYellowtuftNickelHyperaccumulatorPhytoextractionBani A, Echevarria G, Sulçe S, Morel JL. Improving the Agronomy of Alyssum murale for Extensive Phytomining: A Five-Year Field Study. Int J Phytoremediation. 2015;17(1-6):117-127. doi:10.1080/15226514.2013.862204
Alyssum wulfenianum Alpine AlyssumAlpineAlyssumAlpineAlyssum.jpgNickelAccumulatorN/A1) Reeves, R.D. and R.R. Brooks, 1983. Hyperaccumulation of lead and zinc by two metallophytes from a mining area of central Europe. Environ. Pollut. A Ecol. Biol., 31: 277-287. http://scialert.net/fulltext/?doi=jest.2011.118.138&org=11#571365_ja 2) http://www.flickr.com/photos/atrnkoczy/3192189556/ (Photo Source)Hardiness zone 6NNN
Amaranthus hypochondriacus L.Amaranth CadmiumAccumulatorPhytoextraction(Phyto Textbook) Ci, N., Li, Z., Fu., Q., Zhuang, P., Guo, B., and Li, H. 2013. Agricultural technologies for enhancing the phytoremediation of cadmium-contaminated soil by Amaranthus hypochondriacus L. Water, Air, and Soil Pollution 224 (9), pp. 1-8.
Amaranthus retroflexus Redroot AmaranthAmaranthus retroflexusRedrootAmaranth.jpgCadmium, Cesium, Nickel, ZincN/AN/A1) McCutcheon & Schnoor 2003, Phytoremediation. New Jersey, John Wiley & Sons pg 19 2) http://www.flickr.com/photos/plant_diversity/3703457603/(Photo Source)Hardiness Zones 3 to 10.NNN
Ambrosia artemisiifolia L. Common ragweedCommonragweedCommonragweed.jpgLeadHyperaccumulatorN/A1) McCutcheon, S.C.; Schnoor, J.L., Phytoremediation: Transformation and Control of Contaminants, A Wiley-Interscience Series of Texts and Monographs, Hoboken, NJ: John Wiley, pp. 59 2) http://www.flickr.com/photos/28340342@N08/2976017730/(Photo Source)Used for erosion controlNNN
Amorpha fruticosa Indigo BushIndigoBushIndigoBush.jpgLeadAccumulator of LeadN/A1) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 2)http://www.flickr.com/photos/50532466@N06/4963900990/(Photo Source)USDA Hardiness Zone 4 to 9NNN
Amorpha fruticosa Linn.Desert False IndigoZinc, Lead ,CopperAccumulatorShi X, Chen YT, Wang SF, et al. Phytoremediation potential of transplanted bare-root seedlings of trees for lead/zinc and copper mine tailings. Int J Phytoremediation. 2016;18(11):1155-1163. doi:10.1080/15226514.2016.1189399
Andropogon geradiiBig BluestemBigBluestemBigBluestem.jpgAnthracene, Arsenic, Atrazine, Copper, Polychlorinated Biphenyl (PCB)Accumulator, hyperaccumulatorPhytodegradation, Rhizofiltration1) The University of Texas. http://wildflower.org/explore/ 2) http://www.flickr.com/photos/kingsbraegarden/4860079343/(Photo Source)Sun to partial shade required. Hardiness zone 3-10NNN
Andropogon gerardiBig Blue StemAtrazinePhytodegredationKhrunyk Y, Schiewer S, Carstens KL, Hu D, Coats JR. Uptake of C14-atrazine by prairie grasses in a phytoremediation setting. Int J Phytoremediation. 2017;19(2):104-112. doi:10.1080/15226514.2016.1193465
Arabidopsis halleriCadmium, Lead, ZincHyperaccumulatorPhytoextractionTlustoš P, B?endová K, Száková J, Najmanová J, Koubová K. The long-term variation of Cd and Zn hyperaccumulation by Noccaea spp and Arabidopsis halleri plants in both pot and field conditions. Int J Phytoremediation. 2016;18(2):110-115. doi:10.1080/15226514.2014.981243
Arbutus unedo 'compacta'Compact Strawberry BushPetroleumTolerantN/A1)Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Shrub. Hardiness zone 7-9. Height 5-10 feet.NNN
Arrhenatherum elatiusTall Oat GrassNickel, Copper, Cadmium, Cobalt, Manganese, Lead, Chromium Zinc AccumulatorPhytostabilization (Phyto Textbook) Lu, Y., Li, X., He, M., and Zeng, F. 2013. Behavior of native species Arrhenatherum elatius (Poaceae) and Sonchus transcaspicus (Asteraceae) exposed to a heavy metal polluted field: plant metal concentration phytotoxicity and detoxification responses. International Journal of Phytoremediation 15, pp. 924-937.
Artemisia frigidaFrindged SageFrindgedSageFrindgedSage.jpgCopper, HydrocarbonsN/ARhizofiltration1) Robison, Diana. “PHYTOREMEDIATION OF HYDROCARBON-CONTAMINATED SOIL.” University of Saskatchewan, 2003. Web. 18 Feb2011. . 2) http://www.flickr.com/photos/plant_diversity/5034485838/ (Photo Source)Hardiness zone: 3 - 10NNN
Arundo donaxGiant ReedNickelAccumulatorPhytostabilization, PhytoextractionGalal TM, Shehata HS. Growth and nutrients accumulation potentials of giant reed (Arundo donax L.) in different habitats in Egypt. Int J Phytoremediation. 2016;18(12):1221-1230. doi:10.1080/15226514.2016.1193470 - Atma W, Larouci M, Meddah B, Benabdeli K, Sonnet P. Evaluation of the phytoremediation potential of Arundo donax L. for nickel-contaminated soil. Int J Phytoremediation. 2017;19(4):377-386. doi:10.1080/15226514.2016.1225291
Aspilia africanaHaemorrhage plantPetroleum hydrocarbons Accumulator/TolerantPhytodegredationAnyasi RO, Atagana HI. Profiling of plants at petroleum contaminated site for phytoremediation. Int J Phytoremediation. 2018;20(4):352-361. doi:10.1080/15226514.2017.1393386
Athyrium yokoscenseFernFernFern.jpgCadmium, Copper, LeadAccumulator, HyperaccumulatorN/A1) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pd. fpg 898 2) http://www.flickr.com/photos/jinnrouge/5758898762/(Photo Source)Comes from Japan. Hardiness zone 7NNN
Atriplex halimusMediterranean saltbushCadmium, LeadTolerantPhytoaccumulatorEl-Bakatoushi R, Alframawy AM, Tammam A, Youssef D, El-Sadek L. Molecular and Physiological Mechanisms of Heavy Metal Tolerance in Atriplex halimus. Int J Phytoremediation. 2015;17(9):789-800. doi:10.1080/15226514.2014.964844
Atriplex hortensis Garden OrachGardenOrachGardenOrach.jpgPolychlorinated Biphenyl (PCB)N/AN/A1) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 2) http://www.flickr.com/photos/33590535@N06/3484941042/(Photo Source)Of the spinach family, Orache is an extremely variable species: Shows promise transforming PAH and Graden Orach metabolizes PCB’s. Hardiness Zone: USDA Zones 6-10NNN
Atriplex lentiformisBig SaltbushSalinityHyperaccumulatorPhytoextractionDevi S, Nandwal AS, Angrish R, Arya SS, Kumar N, Sharma SK. Phytoremediation potential of some halophytic species for soil salinity. Int J Phytoremediation. 2016;18(7):693-696. doi:10.1080/15226514.2015.1131229
Atriplex roseaSaltbushCopper, Lead, Nickel, ZincAccumulatorPhytoaccumulation(Phyto Textbook) Kachout SS, Mansoura AB, Mechergui R, Leclerc JC, Rejeb MN, Ouerghi Z. Accumulation of Cu, Pb, Ni and Zn in the halophyte plant Atriplex grown on polluted soil. J Sci Food Agric. 2012;92(2):336?342. doi:10.1002/jsfa.4583
Atriplex semibaccataAustralian saltbushCopper, CadmiumHyperaccumulatorBaycu G, Tolunay D, Ozden H, et al. An Abandoned Copper Mining Site in Cyprus and Assessment of Metal Concentrations in Plants and Soil. Int J Phytoremediation. 2015;17(7):622-631. doi:10.1080/15226514.2014.922929
Avena nudaGrass/OatStrontiumAccumulatorQi L, Qin X, Li FM, et al. Uptake and distribution of stable strontium in 26 cultivars of three crop species: oats, wheat, and barley for their potential use in phytoremediation. Int J Phytoremediation. 2015;17(1-6):264-271. doi:10.1080/15226514.2014.898016
Avena sativaOatOatOat.jpgStrontiumAccumulatorPhytostabilization1) U.S Environmental Protection Agency (EPA). Phytoremediation field studies database for chlorinated solvents, pesticides, explosives, and metals. http://www.afcee.af.mil/shared/media/document/AFD-071130-018Journal of Experimental Botany 2006 57(12):2955-2965; doi:10.1093/jxb/erl056 2) http://www.flickr.com/photos/khianti/4960843947/(Photo Source) 3) Qi L, Qin X, Li FM, et al. Uptake and distribution of stable strontium in 26 cultivars of three crop species: oats, wheat, and barley for their potential use in phytoremediation. Int J Phytoremediation. 2015;17(1-6):264-271. doi:10.1080/15226514.2014.898016Hardiness Zone: USDA Zones 5-10NNN
Avicennia marinaGrey mangroveCadmiumTolerantJian L, Chongling Y, Daolin D, Haoliang L, Jingchun L. Accumulation and speciation of Cd in Avicennia marina tissues. Int J Phytoremediation. 2017;19(11):1000-1006. doi:10.1080/15226514.2017.1303817
Axonopus compressusCarpet Grass, Blanket GrassLead, Zinc, Copper, Cadmium, Petroleum hydrocarbonAccumulatorPhytoaccumulation(Phyto Textbook) Efe, S.I., and Okpali, A.E. 2012. Management of petroleum impacted soil with phytoremediation and soil amendments in Expan Delta State, Nigeria. Journal of Environmental Protection 3, pp. 386-393. - Chamba I, Gazquez MJ, Selvaraj T, Calva J, Toledo JJ, Armijos C. Selection of a suitable plant for phytoremediation in mining artisanal zones. Int J Phytoremediation. 2016;18(9):853-860. doi:10.1080/15226514.2016.1156638 Their usage is more effective when applied together with organic and inor- ganic manure. It is therefore recommended that apart from physical clean-up of oil spills sites, Axonopus sp. and Cyperus sp. should be used in phyto
Azolla filiculoides Water Fern WaterFernWaterFern.jpgMethyl violet 2BHyperaccumulator of Chromium, Accumulator, Tolerant Biodegredation, Phytoextraction1) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plan_0species_0phyto.pd http://www.flickr.com/photos/fjbn/364307000 Azollaceae - Azolla filiculoides Lam. by Fundacin Jardin Botinico Nacional de Viia del, on Flickr http://farm3.staticflickr.com/2471/3643070002_4eace4b90djpg "Azollaceae - Azolla filiculoides Lam. 3) http://www.brighthub.com/engineering/civil/articles/118344.asxx ) sesak Kulen O, Memon A, ksel B. Phytoremediation of petroleum hydrocarbons by using a freshwater fern species Azolla filiculoides Lam. Int J Phytoremediation. 2016;18(5):467-476. doi:10.1080/15226514.2015.1115958 5) Kooh MRR, Lim LBL, Lim LH, Malik OA. Phytoextraction potential of water fern (Azolla pinnata) in the removal of a hazardous dye, methyl violet 2B:Also known as Water Velvet or Pacific Mosquito Fern. Comes from Africa, floating plant. Bioabsorbs metals. hardiness zones 9 to 11NNN
Bacopa monnieri Smooth Water HyssopSmoothWaterHyssopSmoothWaterHyssop.jpgCadmium, Copper, Lead, Chromium, MercuryAccumulatorN/A1) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 2) http://www.flickr.com/photos/tony_rodd/5531264137/ (Photo Source) Accumulator of metals. USDA Hardiness Zone: 9 to 10NNN
Beta vulgarisBeetBeetBeet.jpgCesium, StrontiumAccumulatorN/A1) Phytoremediation of Radio¬nuclides. Dushenkov et al. 1998, Negri and Hinchman 2000, Huang et al. 1998, et al. 1997, Negri and Hinchman 2000, Dushenkov et al. 1998. http://rydberg.biology.colostate.edu/Phytoremediation/2000/Lawra/BZ580.htm 2) http://www.flickr.com/photos/katja-london/1119438550/ (Photo Source) Grass or Forb species able to accumulate radionuclides. Hardiness zone 8NNN
Beta vulgaris var. ciclaSwiss ChardCadmiumAccumulatorAccumulation Type PhytoextractionBroadhurst CL, Chaney RL, Davis AP, et al. Growth and Cadmium Phytoextraction by Swiss Chard, Maize, Rice, Noccaea caerulescens, and Alyssum murale in Ph Adjusted Biosolids Amended Soils. Int J Phytoremediation. 2015;17(1-6):25-39. doi:10.1080/15226514.2013.828015
Betula nigraRiver BirchRiverBirchRiverBirch.jpgBentazon, Polychlorinated Biphenyl (PCB), Trichloroethylene (TCE)  and by-products, Vinyl ChlorideN/AN/A1) http://www.flickr.com/photos/13389908@N03/1820801175/(Photo Source) 2) Solvents in Groundwater: Pilot Study at a Superfund Sis. In: G. Wickramanayake, A. Gavaskar, B. Alleman, and V. Magar (eds.) Bioremediation and Phytoremediation of Chlorinated and Recalcitrant Compounds, p461-466. Battelle Press, Columbus, Ohio.; Ferro, A., Kennedy, J., Kjelgren, R., Rieder, J., and S. Perrin. 1999."Toxicity Assessment of Volatile Organic Compounds in Poplar Trees". International Journal of Phytoremediation. 1(19-17Hardiness Zones: Zones 4-9NNN
Betula pendulaBirchEuropeanWhiteBirchEuropeanWhiteBirch.jpgCadmium, Zinc, Chlorinated Aliphatic Compounds, Trichloroethylene (TCE), heavy metalsAccumulator, HyperaccumulatorPhytoextraction, Phytoaccumulation, Phytostabilization, Phytoscreen, Phytoremediate (*add this word to new terminology update ne1) McCutcheon, S.C, & Schnoor. J.L. (Eds.) (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience.Inc.- http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 2) http://www.flickr.com/photos/uzvards/142479009/(Photo Source) 3) (Phyto Textbook) Evangelou, M.W., Robinson, B.H., Gunthardt-Goerg, M.S., and Schlin, R. 2013. Metal uptake and allocation in trees grown on contaminated land: implications for biomass production. International Journal of Phytoremediation 15 (1), pp. 77-90. 4) (Phyto Textbook) Lewis, J., Qvarfort, U. and Sjostrom, J. 2013. Betula pendula: a promising candidate for phytoremediation of TCE in northern climate, International Journal of Phytoremediation, DOI, 140528074112008. 5) (Phyto Textbook) Saebo, A., Popek, R., Nawrot, B., Hanslin, H., Gawronska, H. and Gawronski, S. 2013. Plant species differences in particulate matter accumulation on leaf surfaces. Science of the Total Envrionment 427, ppHardiness Zone: 3 - 6NNN
Bidens pilosaBlack-JackLeadAccumulatorPhytoextractionCid CV, Rodriguez JH, Salazar MJ, Blanco A, Pignata ML. Effects of co-cropping Bidens pilosa (L.) and Tagetes minuta (L.) on bioaccumulation of Pb in Lactuca sativa (L.) growing in polluted agricultural soils. Int J Phytoremediation. 2016;18(9):908-917. doi:10.1080/15226514.2016.1156636
Bougainvillea spectabilis WiildGreat BougainvilleaCadmiumAccumulatorPhytostabilizationWang W, Zhang M, Liu J. Subcellular distribution and chemical forms of Cd in Bougainvillea spectabilis Willd. as an ornamental phytostabilizer: An integrated consideration. Int J Phytoremediation. 2018;20(11):1087-1095. doi:10.1080/15226514.2017.1365335
Bouteloua curtipendulaSideoats GramaSideoatsGramaSideoatsGrama.jpgAluminum, Arsenic, Copper, Lead, Manganese, ZincN/AN/A1) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 2) ITRC — Phytotechnology Technical and Regulatory Guidance and Decision Trees. Revised by The Interstate Technology & Regulatory Council Phytotechnologies Team February 2009 carbon dioxide 3) http://www.flickr.com/photos/lostinfog/4947413968/(Photo Source) USDA Hardiness Zone 4-9NNN
Bouteloua dactyloidesBuffalo GrassBuffaloGrassBuffaloGrass.jpgCarbon Dioxide, Hydrocarbons, Polycyclic Aromatic Hydrocarbon (PAH)AccumuluatorRhizodegradation1) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. 2) April 2003, Jeremiah Knuth, Department of Civil Engineering, Colorado State University.http://rydberg.biology.colostate.edu/Phytoremediation/2003/Knuth/home.htm 3) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 4) USDA NRCS Plant Materials Center, Manhattan, Kansas & Kansas State University, Forestry Researchhttp://plants.usda.gov/factsheet/pdf/fs_sani.pdf 5) http://www.flickr.com/photos/31031835@N08/3139246071/ (Photo Source) Perennial Grass: Low Maintenance, drought tolerant lawn re¬quiring little/no mowing. In studies has been shown to reduce TYP and PAH’s in soil. Growth Rate: Rapid, mature height of 2’. Duration, Growth Habit: Perennial, Graminoid. DroughtNNN
Bouteloua gracilis Blue Gamma GrassBouteloua gracilisBlueGammaGrass.jpgCarbon DioxideN/APhytostabilitzation, Rhizodegradation1) April 2003, Jeremiah Knuth, Department of Civil Engineering, Colorado State University.http://rydberg.biology.colostate.edu/Phytoremediation/2003/Knuth/home.htm 2) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 3) http://www.flickr.com/photos/plant_diversity/3797549186/(Photo Source)Growth Rate: Rapid, mature height of 1’. Duration, Growth Habit: Perennial, Graminoid. Drought Tolerance: High. Moisture Use: Medium. Salinity Tolerance: Medium. Shade Tolerance: Intolerant. Habitat: Capable of growing in a wide variety of soils; iNNN
Brachiaria brizanthaSignal grassZincAccumulator, TolerantPhytoextraction1) Silva EB, Fonseca FG, Alleoni LR, Nascimento SS, Grazziotti PH, Nardis BO. Availability and toxicity of cadmium to forage grasses grown in contaminated soil. Int J Phytoremediation. 2016;18(9):847-852. doi:10.1080/15226514.2016.1146225 2) Nardis BO, Silva EB, Grazziotti PH, Alleoni LRF, Melo LCA, Farnezi MMM. Availability and zinc accumulation in forage grasses grown in contaminated soil. Int J Phytoremediation. 2018;20(3):205-213. doi:10.1080/15226514.2017.1365347Urochloa decumbens cv. Basilisk
Brachiaria mutica ParagrassChromiumHyperaccumulatorPhytoextraction(Phyto Textbook) Mohanty, M., and Patra, H. K. 2012. Phytoremediation Potential of Paragrass— An In Situ Approach for Chromium Contaminated Soil. International Journal of Phytoremediation 14 (8), pp. 798-805.
Brassica campestris Linn.MustardEndosulfan (cyclodiene insecticide)AccumulatorPhytoextraction, Phytodegradation(Phyto Textbook) Mukherjee, I., and Kumar, A. 2012. Phytoextraction of endosulfan a remediation technique. Bulletin of Environmental Contamination and Toxicology 88 (2), pp. 250-254.
Brassica junceaIndian MustardIndianMustardIndianMustard.jpgCopper, Zinc, Selenium, Cadmium, Chromium, Vanadium, Lithium, NickelAccumulator/Tolerant, HyperaccumulatorRhizofiltration, Phytoaccumulation, Phytoextraction, Phytostabilization1) USDA NRCS Plant Materials Center, Manhattan, Kansas & Kansas State University, Forestry Researchhttp://plants.usda.gov/factsheet/pdf/fs_sani.pdf 2) James A. Duke. 1983. Handbook of Energy Crops. unpublished. http://www.hort.purdue.edu/newcrop/duke_energy/Brassica_juncea.html 3) April 2003, Jeremiah Knuth, Department of Civil Engineering, Colorado State University.http://rydberg.biology.colostate.edu/Phytoremediation/2003/Knuth/home.htm 4) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 5) http://www.flickr.com/photos/dinesh_valke/3031209165/(Photo Source) 6) Nissim WG, Hasbroucq S, Kadri H, Pitre FE, Labrecque M. Potential of selected Canadian plant species for phytoextraction of trace elements from selenium-rich soil contaminated by industrial activity. Int J Phytoremediation. 2015;17(8):745-752. doi:Interesting Qualities: Early Spring bloom of brilliant yellow flowers. Growth Rate: Rapid, mature height of 4’. Duration, Growth Habit: Perennial, Forb/Herb . Drought Tolerance: Low. Moisture Use: Medium. Salinity. Tolerance: None. Shade Tolerance:NNN
Brassica napusCanola, RapeseedCanolaCanola.jpgCadmium, ZincAccumulator, HyperaccumulatorPhytoextraction1) Groom, C.A, A. Halasz, L. Paquet, N. Morris, L. Olivier, C. Dubois and J. Hawari (2002) Accumulation of HMX (Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) in Indigenous and Agricultural Plants Grown in HMX- Contaminated Anti-Tank Firing-Range Soil. Environ. Sci. & Technol. 2002, Vol 36, Issue 1 p112-118. 2) A Resource Guide: The Phytoremediation of Lead to Urban, Residential Soils. Site adapted from a report from Northwestern University written by Joseph L. Fiegl, Bryan P. McDonnell, Jill A. Kostel, Mary E. Finster, and Dr. Kimberly Gray Phytoremediation. By McCutcheon & Schnoor. 2003, New Jersey, John Wiley & Sons pg 19 (Barium source) 3) http://www.flickr.com/photos/joeshlabotnik/482197327/ (Photo Source) 4) Pan F, Meng Q, Luo S, et al. Enhanced Cd extraction of oilseed rape (Brassica napus) by plant growth-promoting bacteria isolated from Cd hyperaccumulator Sedum alfredii Hance. Int J Phytoremediation. 2017;19(3):281-289. doi:10.1080/15226514.2016.1225280 Also known as Field Mustard, or Rapeseed plant. Hardiness zone 8-11.NNN
Brassica oleracea var. capitata.Cabbage CabbageCabbage.jpgCesiumN/AN/A1) Phytoremediation of Radio¬nuclides. Dushenkov et al. 1998, Negri and Hinchman 2000, Huang et al. 1998, et al. 1997, Negri and Hinchman 2000, Dushenkov et al. 1998. http://rydberg.biology.colostate.edu/Phytoremediation/2000/Lawra/BZ580.htm 2)http://www.flickr.com/photos/frankdouwes/3984804380/ (Photo Source) Glomus mosseae as chelating agent (amendment). It increases the surface area of the plan roots, allowing roots to acquire more nutrients, water and therefore more available radionuclides in soil solution. Ammonium chloride as chelating agent (amend¬menNNN
Brickellia sp.BrickellbushZincAccumulatorPhytoaccumulation(Phyto Textbook) Cortes-Jimenez, E., Mugica-Alvarez, V., Gonzalez-Chavez, M., Carrillo-Gonzalez, R., Gordillo, M., and Mier, M. 2013. Natural revegetation of alkaline tailing heaps at Taxco, Guerrero, Mexico. International Journal of Phytoremediatio15 (2), pp. 127-141.Guardiola tulocarpus, Juniperus flaccida, and Ficus goldmanii, presented low BCFs. These species are well suited to cope with the toxic conditions, and they could be propagated for revegetation and stabilization of these residues and to decrease metal bio
Broussonetia papyriferaPaper MulberryLeadAccumulator/TolerantKang W, Bao J, Zheng J, Xu F, Wang L. Phytoremediation of heavy metal contaminated soil potential by woody plants on Tonglushan ancient copper spoil heap in China. Int J Phytoremediation. 2018;20(1):1-7. doi:10.1080/15226514.2014.950412
Bryophyllum pinnatumCathedral bellsPetroleum hydrocarbons Accumulator/TolerantPhytodegredationAnyasi RO, Atagana HI. Profiling of plants at petroleum contaminated site for phytoremediation. Int J Phytoremediation. 2018;20(4):352-361. doi:10.1080/15226514.2017.1393386
Bulbine frutescensBulbine frutescensPetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Groundcover. Variety: Orange and Yellow. Hardiness zone 8b-11.NNN
Cajanus cajanPigeon peaChromium, LeadAccumulatorRhizofiltrationJerez Ch JA, Romero RM. Evaluation of Cajanus cajan (pigeon pea) for phytoremediation of landfill leachate containing chromium and lead. Int J Phytoremediation. 2016;18(11):1122-1127. doi:10.1080/15226514.2016.1186592
Calendula algeriensis Boiss and ReuterLead, Zinc, Copper ,CadmiumAccumulatorPhytoextraction, phytostabilizationMidhat L, Ouazzani N, Esshaimi M, Ouhammou A, Mandi L. Assessment of heavy metals accumulation by spontaneous vegetation: Screening for new accumulator plant species grown in Kettara mine-Marrakech, Southern Morocco. Int J Phytoremediation. 2017;19(2):191-198. doi:10.1080/15226514.2016.1207604
Calendula officinalis LPot Marigold, RuddlesCadmium, LeadAccumulatorMani D, Kumar C, Patel NK. Hyperaccumulator oilcake manure as an alternative for chelate-induced phytoremediation of heavy metals contaminated alluvial soils. Int J Phytoremediation. 2015;17(1-6):256-263. doi:10.1080/15226514.2014.883497
Canavalia ensiformis L.Jack BeanCadmiumAccumulatorPhytoextractionAriana Carramaschi Francato Zancheta, Cleide Aparecida De Abreu, Fernando César BachiegaZambrosi, Norma de Magalhães Erismann & Ana Maria Magalhães Andrade Lagôa (2015) Cadmium Accumulationby Jack-Bean and Sorghum in Hydroponic Culture, International Journal of Phytoremediation, 17:3, 298-303, DOI:10.1080/15226514.2014.883492 (1) (PDF) Cadmium Accumulation by Jack-Bean and Sorghum in Hydroponic Culture. Available from: https://www.researchgate.net/publication/268336638_Cadmium_Accumulation_by_Jack-Bean_and_Sorghum_in_Hydroponic_Culture [accessed Jun 25 2020].
Cannabis sativaHempCadmiumAccumulatorPhytoextractionAhmad A, Hadi F, Ali N. Effective Phytoextraction of Cadmium (Cd) with Increasing Concentration of Total Phenolics and Free Proline in Cannabis sativa (L) Plant Under Various Treatments of Fertilizers, Plant Growth Regulators and Sodium Salt. Int J Phytoremediation. 2015;17(1-6):56-65. doi:10.1080/15226514.2013.828018
Carduus pycnocephalus L. subsp. pycnocephalusItalian thistleMetalPhytostabilization(Phyto Textbook) Perrino, E. V., Brunetti, G., and Farrag, K. 2013. Plant communities in multi-metal contaminated soils: a case study in the National Park of Alta Murgia (Apulia region-Southern Italy). International Journal of Phytoremediation 16, pp. 871-888.
Carex lyngbyeiLyngbye's SedgeCadmium, LeadN/AN/A1) Gallagher, J.L and H.V. Kibby, 1980. Marsh plants as vectors in trace metal transport in Oregon tidal marshes. American Journal of Botany, 67: 1069-1074Hardiness Zone, zone 3-9.NNN
Carex praegracilisClustered Field SedgeTrichloroethylene (TCE)  and by-productsN/AN/A1) Jordahl, J., R. Tossell, M. Barackman and G. Vogt (2003) Phytoremediation for Hydraulic Control and Remediation: Beale 2) Air Force Base and Koppel Stockton Terminal. Abstracts from US EPA International Applied Phytotechnologies Workshop March 3-5, 2003 Chicago, INNN
Carex vulpinoidea Fox Sedge FoxSedgeFoxSedge.jpgCadmium, Copper, LeadAccumulatorN/A1) http://www.arkive.org/true-fox-sedge/carex-vulpina/image-A2883.html 2) http://www.flickr.com/photos/50352333@N06/4733667076/(Photo Source)Salt Tolerant: Low to moderate. Qualities: Densely clumped cool season, perennial sedge. Shallow water of 6” of inundation or less wet/saturated conditions. Partial to full sun. Roots: Short rootstocks. Hardy to Zones 3 - 7.NNN
Cassia corymbosaSennaPetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Shrub. USDA Hardiness Zone: 11NNN
Catharanthus roseus L. w/ P. fluorescens and B. subtilisMadasgascar PeriwinkleCopper, LeadTolerantAccumulatorKhan WU, Ahmad SR, Yasin NA, Ali A, Ahmad A. Effect of Pseudomonas fluorescens RB4 and Bacillus subtilis 189 on the phytoremediation potential of Catharanthus roseus (L.) in Cu and Pb-contaminated soils. Int J Phytoremediation. 2017;19(6):514-521. doi:10.1080/15226514.2016.1254154
Ceder la fissilisZinc, Cadmium, Copper, PalladiumTolerantAccumulatorMeyer ST, Castro SR, Fernandes MM, Soares AC, de Souza Freitas GA, Ribeiro E. Heavy-metal-contaminated industrial soil: Uptake assessment in native plant species from Brazilian Cerrado. Int J Phytoremediation. 2016;18(8):832-838. doi:10.1080/15226514.2016.1146224
Celosia argentea Linn.Plumed CockscombMoscovium, CadmiumHyperaccumulatorPhytoextractionLiu J, Mo L, Zhang X, Yao S, Wang Y. Simultaneous hyperaccumulation of cadmium and manganese in Celosia argentea Linn. Int J Phytoremediation. 2018;20(11):1106-1112. doi:10.1080/15226514.2017.1365341
Centella asiaticaIndian pennywortIronHyperaccumulatorPhytostabilizationBhat IU, Mauris EN, Khanam Z. Phytoremediation of iron from red soil of tropical region by using Centella asiatica. Int J Phytoremediation. 2016;18(9):918-923. doi:10.1080/15226514.2016.1156637
Cerastium arvense Field ChickweedFieldChickweedFieldChickweed.jpgCadmiumAccumulatorN/A1) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 2)http://www.flickr.com/photos/miguelvieira/4687623115/(Photo Source)Tufted perennial, white flowers. USDA Hardiness Zone 8NNN
Cercis canadensisEastern Red BudEasternRedBudEasternRedBud.jpgPerchloroethylene (PCE), Petroleum, Trichloroethylene (TCE)  and by-products, Vinyl ChlorideTolerantN/A1) Ferro, A., Chard, B., Gefell, M., Thompson, B., and R. Kjelgren. 2000. "Phytoremediation of Organic Solvents in Groundwater: Pilot Study at a Superfund Site". In: G. Wickramanayake, A. Gavaskar, B. Alleman, and V. Magar (eds.) Bioremediation and Phytoremediation of Chlorinated and Recalcitrant Compounds, p461-466. Battelle Press, Columbus, Ohio.; Ferro, A., Kennedy, J., Kjelgren, R., Rieder, J., and S. Perrin. 1999."Toxicity Assessment of Volatile Organic Compounds in Poplar Trees". International Journal of Phytoremediation. 1(1): 9-17. 2) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003 3) http://tinyurl.com/79qd8wd (Photo Source)Tree. Oklahoma variety tolerant of Petroleum. Hardiness Zones: Zones 4 - 9.NNN
Chamaedorea seifrizii Bamboo PalmBambooPalmBambooPalm.jpgBenzene, Formaldehyde, Toluene, XyleneN/AN/A1) Wolverton, B.C. (1996) How to Grow Fresh Air. New York: Penguin Books. 2) B. C. Wolverton and J.D. Wolverton. "Plants and Soil Microorganisms: Removal of Formaldehyde, Xylene, Ammonia From the Indoor Environment" 3) http://www.flickr.com/photos/adaduitokla/5969514177/ (Photo Source)Also known as Reed Palm. Tree, shrub, Hardiness zone 9-11. Part sun, shade. NNN
Chelidonium majus var. asiaticumGreater CelandineArsenicAccumulatorPhytostabilization(Phyto Textbook) Zhang, Z., Sugawara, K., Hatayama, M., Huang, Y., and Inoue, C. 2014. Screening of As-accumulating plants using a foliar application and a native accumulation of As. International Journal of Phytoremediation 16 (3), pp. 257-266, DOI, 10.1080/15226514.2013.773277.
Chenopodium ambrosioides L.Mexican teaManganeseTolerantAccumulatorXue S, Zhu F, Wu C, Lei J, Hartley W, Pan W. Effects of manganese on the microstructures of Chenopodium ambrosioides L., A manganese tolerant plant. Int J Phytoremediation. 2016;18(7):710-719. doi:10.1080/15226514.2015.1131233
Chloris barbataSwollen FingergrassPetroleum hydrocarbons Accumulator/TolerantPhytodegredationAnyasi RO, Atagana HI. Profiling of plants at petroleum contaminated site for phytoremediation. Int J Phytoremediation. 2018;20(4):352-361. doi:10.1080/15226514.2017.1393386
Chlorophytum comosum Spider PlantSpiderPlantSpiderPlant.jpgCarbon, Carbon Monoxide, Formaldehyde, Toluene, XyleneN/APhytoextraction1) Plants "Clean" Air Inside Our Homes (kilde NASA) 2)http://www.flickr.com/photos/bsabarnowl/3709185319/(Photo Source) 3) Wolverton, B.C. (1996) How to Grow Fresh Air. New York: Penguin Books. 4) B. C. Wolverton and J.D. Wolverton. "Plants and Soil Microorganisms: Removal of Formaldehyde, Xylene, Ammonia From the Indoor Environment". Retrieved 2011-08-27.Light: full sun, easy maintenance. USDA hardiness zones: 9B through 11NNN
Christella dentataBinungArsenicAccumulatorPhyotextractionRaj A, Jamil S, Srivastava PK, Tripathi RD, Sharma YK, Singh N. Feasibility Study of Phragmites karka and Christella dentata Grown in West Bengal as Arsenic Accumulator. Int J Phytoremediation. 2015;17(9):869-878. doi:10.1080/15226514.2014.964845
Chromolaena odorataSiam weedCadmium, Total petroleum hydrocarbons, Lead, Petroleum hydrocarbons,AccumulatorPhytoextraction1) Jampasri K, Pokethitiyook P, Kruatrachue M, Ounjai P, Kumsopa A. Phytoremediation of fuel oil and lead co-contaminated soil by Chromolaena odorata in association with Micrococcus luteus. Int J Phytoremediation. 2016;18(10):994-1001. doi:10.1080/15226514.2016.1183568http://tropical.theferns.info/viewtropical.php?id=Chromolaena+odorata
Chrysanthemum x morifoliumChrysanthemumChrysanthemumChrysanthemum.jpgBenzene, Carbon Monoxide, Formaldehyde, Toluene, Trichloroethylene (TCE)  and by-products, XyleneAccumulator of Benzene, Trichloroethylene, and FormaldehydePhytoextraction1) http://www.colostate.edu/Depts/CoopExt/4DMG/Plants/clean.htm 2) Wolverton, B.C. (1996) How to Grow Fresh Air. New York: Penguin Books. 3) B. C. Wolverton and J.D. Wolverton. "Plants and Soil Microorganisms: Removal of Formaldehyde, Xylene, Ammonia From the Indoor Environment". Retrieved 2011-08-27. 4) http://www.flickr.com/photos/martinlabar/2077880884/(Photo Source)Also known as Pot Mum or Florists Mum. Plant Characteristics: Full Sun, High Water, Easy to Grow. Hardiness zone 3-9NNN
Cicer arietinumChick peaZinc, Copper, CadmiumAccumulatorMurtaza G, Javed W, Hussain A, Qadir M, Aslam M. Soil-applied zinc and copper suppress cadmium uptake and improve the performance of cereals and legumes. Int J Phytoremediation. 2017;19(2):199-206. doi:10.1080/15226514.2016.1207605
Cichorium intybusChicoryCadmiumAccumulatorPhytostabilizationXiao Y, Li Y, Che Y, Deng S, Liu M. Effects of biochar and nitrogen addition on nutrient and Cd uptake of Cichorium intybus grown in acidic soil. Int J Phytoremediation. 2018;20(4):398-404. doi:10.1080/15226514.2017.1365342
Cinnamomum camphoraCamphor TreeCadmiumPhytostabilizationZeng P, Guo Z, Cao X, Xiao X, Liu Y, Shi L. Phytostabilization potential of ornamental plants grown in soil contaminated with cadmium. Int J Phytoremediation. 2018;20(4):311-320. doi:10.1080/15226514.2017.1381939
Cistus x purpureusPurple Rock RosePetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Shrub. Variety: firescaping plant. USDA Cold Hardiness Zones, 8 - 11NNN
Claytonia perfoliataMiner's LettuceMinersLettuceMinersLettuce.jpgCadmiumAccumulatorN/A1) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 2) http://www.flickr.com/photos/miguelvieira/4475772800/(Photo Source) A somewhat succulent annual with white or pink flowers. NNN
Clytostoma callistegioidesLavendar Trumpet VinePetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Vine. Cold hardiness zones: 9 - 11NNN
Cocos nuciferaCoconut PalmCoconutPalmCoconutPalm.jpgCesiumAccumulator of RadionuclidesN/A1) Phytoremediation of Radio¬nuclides. Dushenkov et al. 1998, Negri and Hinchman 2000, Huang et al. 1998, et al. 1997, Negri and Hinchman 2000, Dushenkov et al. 1998. http://rydberg.biology.colostate.edu/Phytoremediation/2000/Lawra/BZ580.htm 2) http://www.flickr.com/photos/jevanssccf/5303468878/ (Photo Source)Hardiness zone 5-6NNN
Colocasia esculentaTaroCadmium, ZincAccumulatorPhytoaccumulationMadera-Parra CA, Peña-Salamanca EJ, Peña MR, Rousseau DP, Lens PN. Phytoremediation of Landfill Leachate with Colocasia esculenta, Gynerum sagittatum and Heliconia psittacorum in Constructed Wetlands. Int J Phytoremediation. 2015;17(1-6):16-24. doi:10.1080/15226514.2013.828014, Chayapan P, Kruatrachue M, Meetam M, Pokethitiyook P. Effects of Amendments on Growth and Uptake of Cd and Zn by Wetland Plants, Typha angustifolia and Colocasia esculenta from Contaminated Sediments. Int J Phytoremediation. 2015;17(9):900-906. doi:10.1080/15226514.2014.989310 - Chayapan P, Kruatrachue M, Meetam M, Pokethitiyook P. Effects of Amendments on Growth and Uptake of Cd and Zn by Wetland Plants, Typha angustifolia and Colocasia esculenta from Contaminated Sediments. Int J Phytoremediation. 2015;17(9):900-906. doi:10.1080/15226514.2014.989310
Conocarpus erectusButtonwoodArsenicTolerantPhytostabilizationHussain S, Akram M, Abbas G, et al. Arsenic tolerance and phytoremediation potential of Conocarpus erectus L. and Populus deltoides L. Int J Phytoremediation. 2017;19(11):985-991. doi:10.1080/15226514.2017.1303815
Convolvulus tricolorDwarf morning gloryLead, NickelAccumulatorValizadeh, Rezvan, and Leila Mahdavian. “Phytoremediation and Absorption Isotherms of Heavy Metal Ions ByConvolvulus Tricolor(CTC).” International Journal of Phytoremediation, vol. 18, no. 4, 2015, pp. 329–336., doi:10.1080/15226514.2015.1094449.
Conyza bonariensisIron, Lead, ManganeseAccumulatorPhytostabilizationEid EM, Shaltout KH. Bioaccumulation and translocation of heavy metals by nine native plant species grown at a sewage sludge dump site. Int J Phytoremediation. 2016;18(11):1075-1085. doi:10.1080/15226514.2016.1183578
Conyza canadensisHorseweedCadmiumAccumulator/TolerantZhou C, Zhang K, Lin J, et al. Physiological Responses and Tolerance Mechanisms to Cadmium in Conyza canadensis. Int J Phytoremediation. 2015;17(1-6):280-289. doi:10.1080/15226514.2014.898021
Copaifera langsdorffiiDiesel treeZinc, Cadmium, Copper, PalladiumTolerantAccumulatorMeyer ST, Castro SR, Fernandes MM, Soares AC, de Souza Freitas GA, Ribeiro E. Heavy-metal-contaminated industrial soil: Uptake assessment in native plant species from Brazilian Cerrado. Int J Phytoremediation. 2016;18(8):832-838. doi:10.1080/15226514.2016.1146224
Coronopus didymus Swine cressLeadAccumulatorPhytoextractionSidhu GPS, Bali AS, Singh HP, Batish DR, Kohli RK. Phytoremediation of lead by a wild, non-edible Pb accumulator Coronopus didymus (L.) Brassicaceae. Int J Phytoremediation. 2018;20(5):483-489. doi:10.1080/15226514.2017.1374331
Cosmos bipinnatusGarden cosmoPetroleum hydrocarbons Accumulator/TolerantPhytodegredationAnyasi RO, Atagana HI. Profiling of plants at petroleum contaminated site for phytoremediation. Int J Phytoremediation. 2018;20(4):352-361. doi:10.1080/15226514.2017.1393386
Cosmos sulphureusSulfur cosmoCadmiumAccumulatorPhytoextractionZhou G, Guo J, Yang J, Yang J. Effect of fertilizers on Cd accumulation and subcellular distribution of two cosmos species (Cosmos sulphureus and Cosmos bipinnata). Int J Phytoremediation. 2018;20(9):930-938. doi:10.1080/15226514.2018.1448362
Cucurbita pepoZucchiniZucchiniZucchini.jpgweathered chlordane, DDX residues, AccumulatorPhytoaccumulation1) Final Report: EPA Grant Number r825549c045. Available at http://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.abstractDetail/abstract/5250/report/F 2) Belden, JB; Clark, BW; Phillips, TZ; Hendersen, KL; Arthur, EL; Coats, JR. 2003. Detoxification of Pesticide Residues in Soil Using Phytoremediation. ACS Symposium Series 863: Pesticide Decontamination and Detoxification, Chapter 12. Ed: JJ Gan, PC Zhu, SD Aust, AT Lemley. American Chemical Society, 2003. 3) http://www.flickr.com/photos/stukjefotogebeuren/5741011434/ (Photo Source) 4) (Phyto Textbook) Isleyen, M., Sevim, P., Hawthorne, J., Berger, W., and White, J.C. 2013. Inheritance profile of weathered chlordane and P,P -DDTS accumulation by curcurbita pepo hybrids. International Journal of Phytoremediation 15, pp. 861-876Plant type: Vegetable. USDA Hardiness Zones: Varies. Sun exposure: Full Sun. Soil type: Loamy. Well-drained, loose soil.NNN
Cymbopogon citratus (D.C.) StapfLemon GrassAl, Zinc, Lead, Cadmium, Chromium, Arsenic, NickelTolerantPhytostabilizationGautam M, Pandey D, Agrawal M. Phytoremediation of metals using lemongrass (Cymbopogon citratus (D.C.) Stapf.) grown under different levels of red mud in soil amended with biowastes. Int J Phytoremediation. 2017;19(6):555-562. doi:10.1080/15226514.2016.1267701
Cynodon dactylon Bermuda grass BermudagrassBermudagrass.jpgAluminum, Arsenic, Cadmium, Copper, Diesel Fuel, Hydrocarbons, LeadAccumulator, HyperaccumulatorRhizofiltration1)Enhancing Phytoextraction: The Effect of Chemical Soil Manipulation on Mobility, Plant Accumulation, and Leaching of Heavy Metals, by Ulrich Schmidt. 2) http://www.flickr.com/photos/athomeinscottsdale/5149601901/(Photo Source)Mean petroleum hydrocarbons reduction of 68% after 1 year. Hardiness zone 5 and 6.NNN
Cyperus alternifoliusUmbrella papyrusEthanolaminesAccumulatorPhytodegredationDolphen R, Thiravetyan P. Phytodegradation of Ethanolamines by Cyperus alternifolius: Effect of Molecular Size. Int J Phytoremediation. 2015;17(7):686-692. doi:10.1080/15226514.2014.964839
Cyperus brevifolius (Rottb.), Kyllinga brevifolia Rottb.Shortleaf Spikesedge, Green Kyllinga, Kyllinga WeedPetroleum hydrocarbons, Total petroleum hydrocarbonsAccumlation Quantity Accumulator(Phyto Textbook) Basumatary, B., Saikia, R., Das, H., C., and Bordoloi, S. 2013. Field Note: Phytoremediation of Petroleum Sludge Contaminated Field Using Sedge Species, Cyperus rotundus (Linn.) and Cyperus brevifolius (Rottb.). Haask. International Journal of Phytoremediatio. 15 (9), pp. 877-888
Cyperus conglomeratusCadmium, Copper, Lead, ArsenicAccumulatorPhytostabilizationAbbas ZK. Rhizospheric soil enzyme activities and phytominimg potential of Aeluropus lagopoides and Cyperus conglomeratus growing in contaminated soils at the banks of artificial lake of reclaimed wastewater. Int J Phytoremediation. 2017;19(11):1017-1022. doi:10.1080/15226514.2017.1319326
Cytisus multiflorusWhite BroomArsenic, Lead, Copper, Manganese, ZincAccumulatorPhytostabilization(Phyto Textbook) Gomes, P., Valente, T., Pamplona, J., Sequeira Braga, M. A., Pissarra, J., Grande Gil, J.A., and De La Torre, M.L. 2013. Metal uptake by native plants and revegetation potential of mining sulfide-rich waste-dumps. International Journal of Phytoremediation 16, pp. 1087-1103.
Cytisus scopariusScoth broomHeavy Metals and HydrocarbonsAccumulator(Phyto Textbook) Macci, C., Doni, S., Peruzzi, E., Bardella, S., Filippis, G., Ceccanti, B., and Masciandaro, G. 2012. A real-scale soil phytoremediation. Biodegredation 24 (4) pp. 521-540
Dactylis glomerata orchadgeusCat grassHerbicideTolerantBuono DD, Pannacci E, Bartucca ML, Nasini L, Proietti P, Tei F. Use of two grasses for the phytoremediation of aqueous solutions polluted with terbuthylazine. Int J Phytoremediation. 2016;18(9):885-891. doi:10.1080/15226514.2016.1156633
Dendrobium taurinumOrchidOrchidOrchid.jpgAcetone, Ammonia, Benzene, Chloroform, Formaldehyde, Toluene, XyleneN/AN/A1) Wolverton, B.C. (1996) How to Grow Fresh Air. New York: Penguin Books. 2) B. C. Wolverton and J.D. Wolverton. "Plants and Soil Microorganisms: Removal of Formaldehyde, Xylene, Ammonia From the Indoor Environment". Retrieved 2011-08-27. 3) http://www.flickr.com/photos/petereed/409995461/ (Photo Source)This plant requires partial sun. Hardiness Zone 4–9NNN
Deschampsia caespitosa Tufted HairgrassTuftedHairgrassTuftedHairgrass.jpgCadmium, Chromium, Copper, LeadN/AN/A1) April 2003, Jeremiah Knuth, Department of Civil Engineering, Colorado State University.http://rydberg.biology.colostate.edu/Phytoremediation/2003/Knuth/home.htm 2) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 3)http://www.flickr.com/photos/plant_diversity/3862681170/(Photo Source) Growth Rate: Moderate, Mature height of 3.4’. Duration, Growth Habit: Perennial, Graminoid. Drought Tolerance: Low. Moisture Use: Medium. Salinity Tolerance: Low. Shade Tolerance: Intolerant. Habitat: Marshy grassland, prefers areas of poorly-drainNNN
Dietes irioidesFortnight LilyPetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Shrub. Variety: (Moraea) bicolor. Hardy in zones 8 - 10NNN
Digitalis purpurea Common FoxgloveCommonFoxgloveCommonFoxglove.jpgCadmiumN/APhytoextraction1) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 2) http://www.flickr.com/photos/zeneecec/3611840858/(Photo Source)Hardiness zone 4-9NNN
Distichlis spicataInland SaltgrassDistichlis strictaInlandSaltgrass.jpgCadmium, Copper, LeadAccumulatorN/A1) USDA NRCS Plant Materials Center, Manhattan, Kansas & Kansas State University, Forestry Researchhttp://plants.usda.gov/factsheet/pdf/fs_sani.pdf 2) April 2003, Jeremiah Knuth, Department of Civil Engineering, Colorado State University.http://rydberg.biology.colostate.edu/Phytoremediation/2003/Knuth/home.htm 3) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 4)http://www.flickr.com/photos/plant_diversity/3919028223/(Photo Source) Interesting Qualities: Provide great nesting grounds and food for waterfowl, its thick entangled roots great for shoreline protection. Growth Rate: Slow, mature height of 1.1’. Duration, Growth Habit: Perennial, Graminoid. Drought Tolerance: MediumNNN
Dracaena deremensis "Warneckei"WarneckeiBenzene, Carbon Monoxide, Formaldehyde, Trichloroethylene (TCE)  and by-productsN/AN/A1) B.C Wolverton Ph.D -Principal investigator. NASA. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930073077_1993073077.pdfLight requirements: medium. Water requirements: medium, can handle tough drought spells. USDA Zone 11NNN
Dracaena marginataRed-Edged DracaenaRedEdgedDracaenaRedEdgedDracaena.jpgBenzene, Carbon Monoxide, Formaldehyde, Trichloroethylene (TCE)  and by-productsN/AN/A1) B.C Wolverton Ph.D -Principal investigator. NASA. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930073077_1993073077.pdf 2) http://www.flickr.com/photos/33623636@N08/5206363496/(Photo Source)Light: medium. Water: medium, but can handle drought. USDA hardiness zones: 10B through 11NNN
Dryopteris erythrosora Autumn FernAutumnFernAutumnFern.jpgCopper, Lead, Mercury, ZincN/AN/A1) Fryer, Janet L. 2011. Microstegium vimineum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [2011, December 7] 2) http://www.flickr.com/photos/babbagecabbage/129201317/ (Photo Source)Hardiness zones 5-9. Herbaceous Fern. Shade loving. Slow growth rate. Spreading growth habit. Green foliage. Does not flower. Easy careNNN
Echinodorus cordifolius L. GrisebSpade-leaf Sword, Creeping BurheadMono, di, triethyleneglycolAccumulatorPhytodegradationTeamkao P, Thiravetyan P. Phytoremediation of Mono-, Di-, and Triethylene Glycol by Echinodorus cordifolius L. Griseb. Int J Phytoremediation. 2015;17(1-6):93-100. doi:10.1080/15226514.2013.810579
Eichhornia crassipesCommon Water Hyacinth CommonWaterHyacinthCommonWaterHyacinth.jpgCadmium, Cesium, Chromium, Copper, Lead, Mercury, Strontium, Uranium, ZincHyperaccumulator, AccumulatorRhizofiltration1) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 2) http://www.flickr.com/photos/cq-biker/4895999270/(Photo Source) Comes from India; emergent species. Pantropical/Subtropical. Plants sprayed with 2,4-D may accumulate lethal doses of nitrates. 'The troublesome weed' – hence an excellent source of bioenergy. Roots naturally absorb pollutants, some organic compounNNN
Eichhoria crassipesWater hyacinthMagnesium, Iron, Contaminants of concern (COC)AccumulatorPhytoextraction, Phytostabilization1) Mercado-Borrayo BM, Cram Heydrich S, Pérez IR, Hernández Quiroz M, De León Hill CP. Organophosphorus and Organochlorine Pesticides Bioaccumulation by Eichhornia crassipes in Irrigation Canals in an Urban Agricultural System. Int J Phytoremediation. 2015;17(7):701-708. doi:10.1080/15226514.2014.964841 2) Romanova TE, Shuvaeva OV, Belchenko LA. Phytoextraction of trace elements by water hyacinth in contaminated area of gold mine tailing. Int J Phytoremediation. 2016;18(2):190-194. doi:10.1080/15226514.2015.1073674 3) Pandey VC. Phytoremediation efficiency of Eichhornia crassipes in fly ash pond. Int J Phytoremediation. 2016;18(5):450-452. doi:10.1080/15226514.2015.1109605 4) Hazra M, Avishek K, Pathak G. Phytoremedial Potential of Typha latifolia, Eichornia crassipes and Monochoria hastata found in Contaminated Water Bodies Across Ranchi City (India). International Journal of Phytoremediation. 2015 ;17(9):835-840. DOI: 10.1080/15226514.2014.964847.
Elaegnus angustifoliaRussian OliveRussianOliveRussianOlive.jpgTrichloroethylene (TCE)  and by-productsN/AN/A1) U.S Environmental Protection Agency (EPA). Phytoremediation field studies database for chlorinated solvents, pesticides, explosives, and metals. http://www.afcee.af.mil/shared/media/document/AFD-071130-018.pdf 2) http://www.flickr.com/photos/urtica/19751137/ (Photo Source)Groundwater flow patterns are complex, but to date no significant groundwater depression as a result of evapotranspiration of the trees has developed. USDA Hardiness Zone: 3 to 8NNN
Eleusine coracanaFinger milletChromiumTolerantPhytoextractionPadmapriya S, Murugan N, Ragavendran C, Thangabalu R, Natarajan D. Phytoremediation potential of some agricultural plants on heavy metal contaminated mine waste soils, salem district, tamilnadu. Int J Phytoremediation. 2016;18(3):288-294. doi:10.1080/15226514.2015.1085832
Elodea canadensisPondweedPondweedPondweed.jpgAtrazine, Cadmium, Copper, Endosulfan Sulfate, Lead, Trichloroethylene (TCE)  and by-productsAccumulatorRhizodegredation, Phytofiltration1) USDA NRCS Plant Materials Center, Manhattan, Kansas & Kansas State University, Forestry Researchhttp://plants.usda.gov/factsheet/pdf/fs_sani.pdf 2) Earl J.S Rook. Fens of Yodeler Creek, BWCAW. http://www.rook.org/earl/bwca/nature/aquatics/ 3) April 2003, Jeremiah Knuth, Department of Civil Engineering, Colorado State University.http://rydberg.biology.colostate.edu/Phytoremediation/2003/Knuth/home.htm 4) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant_species_phyto.pdf 5) http://tinyurl.com/84ceb3o (Photo Source) 6) Picco, Patricio, et al. Arsenic Species Uptake and Translocation in Elodea Canadensis International Journal of Phytoremediation, vol. 21, no. 7, 2019, pp. 693-698., doi:10.1080/15226514.201155658Also Known as American Waterweed or Canadian Waterweed. Type: Submergent. Water Use: High Light Requirement: Sun. CaCO3 Tolerance: High Bloom Color: White. Provides shelter for small fishes and aquatic invertebrates. Rapid, lengths of 8"40NNN
Elsholtzia argyiMint familyCopperAccumulator, HyperaccumulatorPhytotolerant, Phytoextraction1) Li S, Yang W, Yang T, Chen Y, Ni W. Effects of Cadmium Stress on Leaf Chlorophyll Fluorescence and Photosynthesis of Elsholtzia argyi--A Cadmium Accumulating Plant. Int J Phytoremediation. 2015;17(1-6):85-92. doi:10.1080/15226514.2013.828020 2) Guan M, Jin Z, Li J, Pan X, Wang S, Li Y. Effect of simulated climate warming on the morphological and physiological traits of Elsholtzia haichowensis in copper contaminated soil. Int J Phytoremediation. 2016;18(4):368-377. doi:10.1080/15226514.2015.1109591
Elymus canadensis Canadian Wild RyeCanadianWildRyeCanadianWildRye.jpgHydrocarbons, Polycyclic Aromatic Hydrocarbon (PAH)AccumulatorRhizodegradation1) http://tinyurl.com/7uhtkzj (Photo Source) 2) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. 3) USDA NRCS Plant Materials Center, Manhattan, Kansas & Kansas State University, Forestry Researchhttp://plants.usda.gov/factsheet/pdf/fs_sani.pdf 4) Phytoremediation of Radio¬nuclides. Dushenkov et al. 1998, Negri and Hinchman 2000, Huang et al. 1998, et al. 1997, Negri and Hinchman 2000, Dushenkov et al. 1998. http://rydberg.biology.colostate.edu/Phytoremediation/2000/Lawra/BZ580.htm 5) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf In combination with other grasses, was shown to reduce PAH’s in soils. Growth Rate: Rapid, mature height of 3’. Duration, Growth Habit: Perennial, Graminoid. Drought Tolerance: Medium. Moisture Use: Medium. Salinity Tolerance: Medium. Shade NNN
Eragrostis atrovirensPetroleum hydrocarbons Accumulator/TolerantPhytodegredationAnyasi RO, Atagana HI. Profiling of plants at petroleum contaminated site for phytoremediation. Int J Phytoremediation. 2018;20(4):352-361. doi:10.1080/15226514.2017.1393386
Eragrostis bahiensis Bahia LovegrassArsenic, Cesium, Chromium, Lead, Manganese, ZincN/AN/A1) Phytoremediation of Radio¬nuclides. Dushenkov et al. 1998, Negri and Hinchman 2000, Huang et al. 1998, et al. 1997, Negri and Hinchman 2000, Dushenkov et al. 1998. http://rydberg.biology.colostate.edu/Phytoremediation/2000/Lawra/BZ580.htm Glomus mosseae as chelating agent (amendment). It increases the surface area of the plan roots, allowing roots to acquire more nutrients, and water, therefore more available radionuclides are found in soil solution. Hardiness zone 6-10NNN
Erato polymnioidesLead, Zinc, Copper, CadmiumHyperaccumulatorChamba I, Gazquez MJ, Selvaraj T, Calva J, Toledo JJ, Armijos C. Selection of a suitable plant for phytoremediation in mining artisanal zones. Int J Phytoremediation. 2016;18(9):853-860. doi:10.1080/15226514.2016.1156638
Erica andevalensisErica x veitchii : Veitch's heathLead TolerantPhytostabilization(Phyto Textbook) Mingorance, M., Leidi, E., Valdes, B., and Oliva, S. 2012. Evaluation of Lead Toxicity in Erica andevalensis as an Alternative Species for Revegetation of Contaminated Soils. International Journal of Phytoremediation 14 (2) pp. 174-185.
Erica arboreaBriar rootManganese, Lead (highest BF)AccumulatorPhytostabilization(Phyto Textbook) Gomes, P., Valente, T., Pamplona, J., Sequeira Braga, M. A., Pissarra, J., Grande Gil, J.A., and De La Torre, M.L. 2013. Metal uptake by native plants and revegetation potential of mining sulfide-rich waste-dumps. International Journal of Phytoremediation 16, pp. 1087-1103.
Eucalyptus camaldulensis River Red Gum Eucalyptus Tree RiverRedGumEucalyptusTreeRiverRedGumEucalyptusTree.jpgArsenic, Cadmium, Calcium, Lead, Manganese, Mercury, Nickel, Silver, SodiumAccumulatorPhytostabilization1) Interstate Technology & Regulatory Council (ITRC). 2006. Planning and Promoting Ecological Reuse of Remediated Sites. ECO-2. Washington, D.C.: Ecological Land Reuse Team, Interstate Technology & Regulatory Council, www.itrcweb.org 2) http://tinyurl.com/6lgga6y (Photo Source) 3) (Phyto Textbook) Meeinkuirt, W., Pokethitiyook, P., Kruatrachue, M., Tanhan, P., and Chairyarat, R. 2012. Phytostabilization of a Pb-contaminated mine tailing by various tree species in pot and field trial experiments. International Journal of Phytoremediation 14 (9), pp. 925-938. 4) Nirola R, Megharaj M, Aryal R, Naidu R. Screening of metal uptake by plant colonizers growing on abandoned copper mine in Kapunda, South Australia. Int J Phytoremediation. 2016;18(4):399-405. doi:10.1080/15226514.2015.1109599High salinity. USDA zones 7 to 11NNN
Eucalyptus cladocalyxSugar GumSaline soilTolerantDoronila AI, Forster MA. Performance measurement via sap flow monitoring of three eucalyptus species for mine site and dryland salinity phytoremediation. Int J Phytoremediation. 2015;17(1-6):101-108. doi:10.1080/15226514.2013.850466
Eucalyptus globulusSouthern Blue GumCadmium, MercuryAccumulatorPhytostabilization, phytoextractionLuo J, Qi S, Peng L, Wang J. Phytoremediation efficiency OF CD by Eucalyptus globulus transplanted from polluted and unpolluted sites. Int J Phytoremediation. 2016;18(4):308-314. doi:10.1080/15226514.2015.1094446
Eucalyptus melliodoraYellow Box, Honey BoxSaline soilTolerantDoronila AI, Forster MA. Performance measurement via sap flow monitoring of three eucalyptus species for mine site and dryland salinity phytoremediation. Int J Phytoremediation. 2015;17(1-6):101-108. doi:10.1080/15226514.2013.850466
Eucalyptus polybracteaBlue-leaved MalleeSaline soilTolerantDoronila AI, Forster MA. Performance measurement via sap flow monitoring of three eucalyptus species for mine site and dryland salinity phytoremediation. Int J Phytoremediation. 2015;17(1-6):101-108. doi:10.1080/15226514.2013.850466
Eucalyptus sideroxylon "Rosea"Red Iron BarkRedIronBarkRedIronBark.jpgTrichloroethylene (TCE)  and by-productsN/AN/AHydraulic control. USDA zones 7 to 11NNN
Eucalyptus urograndisFlooded gumChlorobenzene, benzeneTolerantRhizodegredation, phytovolatization, phytodegredationBarcellos D, Morris LA, Nzengung V, Moura T, Mantripragada N, Thompson A. Eucalyptus urograndis and Pinus taeda enhance removal of chlorobenzene and benzene in sand culture: A greenhouse study. Int J Phytoremediation. 2016;18(10):977-984. doi:10.1080/15226514.2016.1183565
Eugenia dysentericaCagaitaZinc, Cadmium, Copper, PalladiumTolerantAccumulatorMeyer ST, Castro SR, Fernandes MM, Soares AC, de Souza Freitas GA, Ribeiro E. Heavy-metal-contaminated industrial soil: Uptake assessment in native plant species from Brazilian Cerrado. Int J Phytoremediation. 2016;18(8):832-838. doi:10.1080/15226514.2016.1146224
Euonymus coloratusPurple Leaf WintercreeperPetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Groundcover. hardiness zones: 4 - 9NNN
Euonymus japonicas cv. AureomarJapanese euonymusCadmiumPhytostabilizationZeng P, Guo Z, Cao X, Xiao X, Liu Y, Shi L. Phytostabilization potential of ornamental plants grown in soil contaminated with cadmium. Int J Phytoremediation. 2018;20(4):311-320. doi:10.1080/15226514.2017.1381939
Euphorbia miliiCrown of ThornsChromiumTolerantPhytoaccumulationRamana S, Biswas AK, Singh AB, et al. Tolerance of Ornamental Succulent Plant Crown of Thorns (Euphorbia milli) to Chromium and its Remediation. International Journal of Phytoremediation. 2015 ;17(1-6):363-368. DOI: 10.1080/15226514.2013.862203.
Excoecaria agallochaMilk MangroveCadmium, ZincAccumulatorChowdhury R, Favas PJ, Pratas J, Jonathan MP, Ganesh PS, Sarkar SK. Accumulation of Trace Metals by Mangrove Plants in Indian Sundarban Wetland: Prospects for Phytoremediation. Int J Phytoremediation. 2015;17(9):885-894. doi:10.1080/15226514.2014.981244
Festuca arundinaceaTall Fescue Festuca arundinacea (Rietzwenkgras)TallFescue.jpgArsenic, Copper, Lead, ZincAccumulatorPhytoextraction, Phytodegradation, Rhizodegradation, Phytostabilization1) Christensen-Kirsh, K.M (1996). Phytoremediation and wastewater effluent disposal: Guidelines for landscape planners and designers. Master’s Project, Department of Landscape. University of Oregon. 2) Phytoremediation of Radio¬nuclides. Dushenkov et al. 1998, Negri and Hinchman 2000, Huang et al. 1998, et al. 1997, Negri and Hinchman 2000, Dushenkov et al. 1998. http://rydberg.biology.colostate.edu/Phytoremediation/2000/Lawra/BZ580.htm 3) http://www.flickr.com/photos/21933510@N07/4868322363/(Photo Source) 4) Revegetation of Mining Waste Using Organic Soil Amendments and Evaluation of the Potential for Creating Attractive Nusiances for Wildlife. Abstract. 2001. Proceedings of the 2001 Conference on Environmental Research. 5) Mcintosh, Patrick, et al. “Breakdown of Low-Level Total Petroleum Hydrocarbons (TPH) in Contaminated Soil Using Grasses and Willows.” International Journal of Phytoremediation, vol. 18, no. 7, 2015, pp. 656–663., doi:10.1080/15226514.2015.1109598. Fescue is a hardy plant that will remove PCP well in the soil. Also helpful in uptake of nutrients: nitrogen, phosphorus, and potassium. Fescue is a hardy plant that will remove PCP well in the soil. USDA hardiness Zones 3 through 8 6) Nissim WG, HasbrouNNN
Festuca ovinaSheeps fescueCadmiumAccumulatorPhytoextraction, phytostabilizationMajewska M, Jaroszuk-?cise? J. Mobilization of cadmium from Festuca ovina roots and its simultaneous immobilization by soil in a root-soil-extractant system (in vitro test). Int J Phytoremediation. 2017;19(8):701-708. doi:10.1080/15226514.2017.1284744
Festuca Ovina - AzayBlue Sheep FescueTotal petroleum hydrocarbonsRhizodegredationMcintosh, Patrick, et al. “Breakdown of Low-Level Total Petroleum Hydrocarbons (TPH) in Contaminated Soil Using Grasses and Willows.” International Journal of Phytoremediation, vol. 18, no. 7, 2015, pp. 656–663., doi:10.1080/15226514.2015.1109598.
Festuca rubraRed FescueRedFescueRedFescue.jpgCesium, Nitrogen, Phosphorus, TOXIN Polycyclic Aromatic Hydrocarbon (PAH), PotassiumN/ARhizodegradation, Phytoextraction1) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 2) Christensen-Kirsh, K.M (1996). Phytoremediation and wastewater effluent disposal: Guidelines for landscape planners and designers. Master’s Project, Department of Landscape. University of Oregon. 3) http://www.flickr.com/photos/21933510@N07/4868935876/(Photo Source) Introduced perennial grass common in the NW. Studies have shown enhanced degradation of recalcitrant PAH’s. Also help¬ful in uptake of nitrogen, phosphorus, and potassium. hardiness zones 1 through 7,NNN
Ficus elasticaRubber PlantRubberPlantRubberPlant.jpgFormaldehydeHyperaccumulatorN/A1) Plants "Clean" Air Inside Our Homes (kilde NASA) 2) Wolverton, B.C. (1996) How to Grow Fresh Air. New York: Penguin Books. 3) http://www.flickr.com/photos/adaduitokla/5980061421/ (Photo Source)Water loving plant and can grow in low light. USDA hardiness zones: 10 through 11NNN
Ficus benjamina Weeping FigOLYMPUS DIGITAL CAMERAWeepingFig.jpgFormaldehyde, Toluene, XyleneN/AN/A1) Plants "Clean" Air Inside Our Homes (kilde NASA) 2) http://www.flickr.com/photos/brisbanecitycouncil/5156253392/(Photo Source) 3) Wolverton, B.C. (1996) How to Grow Fresh Air. New York: Penguin Books. 4) B. C. Wolverton and J.D. Wolverton. "Plants and Soil Microorganisms: Removal of Formaldehyde, Xylene, Ammonia From the Indoor Environment". Retrieved 2011-08-27.USDA hardiness zones: 10B through 11NNN
Ficus pumilaCreeping/Climbing FigPetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Vine. Hardiness zone 8-11.NNN
Firmiana simplexChinese parasol treeCadmiumAccumulator/TolerantKang W, Bao J, Zheng J, Xu F, Wang L. Phytoremediation of heavy metal contaminated soil potential by woody plants on Tonglushan ancient copper spoil heap in China. Int J Phytoremediation. 2018;20(1):1-7. doi:10.1080/15226514.2014.950412
FraxinusAshPolychlorinated Biphenyl (PCB)N/ARhizodegradation1) Leigh, M.B., J. Fletcher, D.P. Nagle, P. Prouzova, M. Mackova and T. Macek (2003) Rhizoremediation of PCBS: Mechanistic and Field InvestigationsNNN
Fraxinus pennsylvanicaGreen AshPetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Tree. Variety Patmore. Hardiness Zones: Zones 2 - 9NNN
Furcraea gigantea vent.Mauritius HempChromiumAccumulatorPhytostabilizationRamana S, Biswas AK, Singh AB, Ahirwar NK, Prasad RD, Srivastava S. Potential of Mauritius Hemp (Furcraea gigantea Vent.) for the Remediation of Chromium Contaminated Soils. Int J Phytoremediation. 2015;17(7):709-715. doi:10.1080/15226514.2014.964842
Gamblea innovansZincAccumulatorSakurai M, Tomioka R, Hokura A, Terada Y, Takenaka C. Distributions of cadmium, zinc, and polyphenols in Gamblea innovans. Int J Phytoremediation. 2019;21(3):217-223. doi:10.1080/15226514.2018.1524840
Gerbera jamesoniiGerbera DaisyGerberaDaisyGerberaDaisy.jpgBenzene, Formaldehyde, Trichloroethylene (TCE)  and by-productsHyperaccumulatorN/A1) http://www.colostate.edu/Depts/CoopExt/4DMG/Plants/clean.htm 2)Plants "Clean" Air Inside Our Homes (kilde NASA) 3) http://www.flickr.com/photos/dave_fisher/5530457626/ (Photo Source)USDA zones 9-11NNN
Gleditsia triacanthosHoney LocustHoneyLocustHoneyLocust.jpgLeadN/APhytoextration1) USDA NRCS Plant Materials Center, Manhattan, Kansas & Kansas State University, Forestry Researchhttp://plants.usda.gov/factsheet/pdf/fs_sani.pdf 2) April 2003, Jeremiah Knuth, Department of Civil Engineering, Colorado State University.http://rydberg.biology.colostate.edu/Phytoremediation/2003/Knuth/home.htm 3) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 4) http://www.flickr.com/photos/valdelobos/4650528502/ (Photo Source) Canopy of small leaves will not shade out turf grasses or other landscape plants. Growth Rate: Rapid. Medium sized tree-height at 20 Years-35,’ mature-70.0’. Habitat: Prefers anywhere with ample soil moisture. USDA hardiness zones: 3 throughNNN
Glycine max Soybean SoybeanSoybean.jpgArsenic, Cobalt, Copper, NickelAccumulatorPhytoextraction, Phytostabilization1) U.S Environmental Protection Agency (EPA). Phytoremediation field studies database for chlorinated solvents, pesticides, explosives, and metals. http://www.afcee.af.mil/shared/media/document/AFD-071130-018.pdf 2) http://www.flickr.com/photos/pennstatelive/4951136730/ (Photo Source) 3) Zhu S, Ma X, Guo R, et al. A field study on heavy metals phytoattenuation potential of monocropping and intercropping of maize and/or legumes in weakly alkaline soils. Int J Phytoremediation. 2016;18(10):1014-1021. doi:10.1080/15226514.2016.1183570 4) Fu, Yanzhao, et al. “Permeability of Plant Young Root Endodermis to Cu Ions and Cu-Citrate Complexes in Corn and Soybean.” International Journal of Phytoremediation, vol. 17, no. 9, 2015, pp. 822–834., doi:10.1080/15226514.2014.981241.Hardiness: USDA Zones 7-9NNN
Guercus gambelii Gambel OakGambelOakGambelOak.jpgChlorinated Solvents, Lead, Palladium, Plutonium, UraniumN/AN/A1) Phytoremediation of Radionuclides. Dushenkov et al. 1998, Negri and Hinchman 2000, Huang et al. 1998, et al. 1997, Negri and Hinchman 2000, Dushenkov et al. 1998. http://rydberg.biology.colostate.edu/Phytoremediation/2000/Lawra/BZ580.htm 2) http://www.flickr.com/photos/bryanto/2868761091/ (Photo Source)Hardiness Zones: Zones 4-8NNN
Gynerium sagittatumWildcaneCadmium, Mercury, Chromium, Lead- landfill leachateAccumulatorPhytoaccumulationMadera-Parra CA, Peña-Salamanca EJ, Peña MR, Rousseau DP, Lens PN. Phytoremediation of Landfill Leachate with Colocasia esculenta, Gynerum sagittatum and Heliconia psittacorum in Constructed Wetlands. Int J Phytoremediation. 2015;17(1-6):16-24. doi:10.1080/15226514.2013.828014
Hammada scoparia (Pomel) IjinLead, Zinc, Copper ,CadmiumAccumulatorPhytoextraction, phytostabilizationMidhat L, Ouazzani N, Esshaimi M, Ouhammou A, Mandi L. Assessment of heavy metals accumulation by spontaneous vegetation: Screening for new accumulator plant species grown in Kettara mine-Marrakech, Southern Morocco. Int J Phytoremediation. 2017;19(2):191-198. doi:10.1080/15226514.2016.1207604
Handroanthus impetiginosusPink Trumpet TreeZinc, Cadmium, Copper, PalladiumTolerantAccumulatorMeyer ST, Castro SR, Fernandes MM, Soares AC, de Souza Freitas GA, Ribeiro E. Heavy-metal-contaminated industrial soil: Uptake assessment in native plant species from Brazilian Cerrado. Int J Phytoremediation. 2016;18(8):832-838. doi:10.1080/15226514.2016.1146224
Hater HyssopHater HyssopCadmium, Chromium, Copper, Lead, MercuryAccumulator, Hyperaccumulator N/A1) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdfComes from India; emergent species. USDA Hardiness Zone: 3 - 9NNN
Hedera helix English IvyEnglishIvyEnglishIvy.jpgBenzene, Carbon Monoxide, Formaldehyde, Petroleum, Toluene, XyleneHyperaccumulator, TolerantPhytoextraction1) B.C Wolverton Ph.D -Principal investigator. NASA. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930073077_1993073077.pdf 2)Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003 3) http://www.flickr.com/photos/road_less_trvled/3801245172/ (Photo Source) Groundcover. Plant Characteristics: Humidity Needed, Partial Sun, Moderate Water. Hardiness Zones 5 through 10NNN
Helianthus annuus SunflowerSunflowerSunflower.jpgCopperAccumulator, Hyperaccumulator Phytoextraction, Rhizofiltration1) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 2) http://www.flickr.com/photos/aizbaig/5062314980/(Photo Source) 3) Salehi-Lisar SY, Deljoo S, Harzandi AM. Fluorene and Phenanthrene Uptake and Accumulation by Wheat, Alfalfa and Sunflower from the Contaminated Soil. Int J Phytoremediation. 2015;17(12):1145-1152. doi:10.1080/15226514.2015.1045123 4) Bareen FE, Saeed S, Afrasiab H. Differential mobilization and metal uptake versus leaching in multimetal soil columns using EDTA and three metal bioaccumulators. Int J Phytoremediation. 2017;19(12):1109-1117. doi:10.1080/15226514.2017.1328391 5) (Phyto Textbook) Kolbas, A., Mench M., Marchand L., Herzig R., and Nehnevajova, E. 2014. Phenotypic seedling responses of a metal-tolerant mutant line of sunflower growing on a Cu-contaminated soil series. Plant and SThe common sunflower has been the subject of numerous studies and is used to extract heavy metals (lead, Uranium, Strontium, Cesium, Chromium, Cadmium, Copper, Magnesium, Nickel, and Zinc) Organic material, chelating agents/soil amendments: sulfate. USDANNN
Heliconia psittacorumParrott HeliconiaCadmium, Mercury, Chromium, Lead- landfill leachateAccumulatorPhytoaccumulationMadera-Parra CA, Peña-Salamanca EJ, Peña MR, Rousseau DP, Lens PN. Phytoremediation of Landfill Leachate with Colocasia esculenta, Gynerum sagittatum and Heliconia psittacorum in Constructed Wetlands. Int J Phytoremediation. 2015;17(1-6):16-24. doi:10.1080/15226514.2013.828014
Hemerocallis hybridDaylilyPetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Also known as Dwarf Yellow. Perennial, Bulb, Fern. Variety: Happy Returns and Scarlet Orbit. Hardiness zone 3-10.NNN
Hibiscus cannabinus L.KenafIron, ArsenicAccumulator, TolerantPhytostabilization, Phytoextraction(Phyto Textbook) Meera, M., and Agamuthu, P. 2012. Phytoextraction of As and Fe using Hibiscus cannabis L. from soil polluted with landfill leachate. International Journal of Phytoremediation 14 (2), pp. 186-199.
Hirschfeldia incana L. Lagreze-FossatShortpod MustardLead, Zinc, Copper ,CadmiumAccumulatorPhytoextraction, phytostabilizationMidhat L, Ouazzani N, Esshaimi M, Ouhammou A, Mandi L. Assessment of heavy metals accumulation by spontaneous vegetation: Screening for new accumulator plant species grown in Kettara mine-Marrakech, Southern Morocco. Int J Phytoremediation. 2017;19(2):191-198. doi:10.1080/15226514.2016.1207604
Holoptelea integrifoliaIndian ElmArsenicAccumulatorTolerantKumar D, Singh VP, Tripathi DK, Prasad SM, Chauhan DK. Effect of Arsenic on Growth, Arsenic Uptake, Distribution of Nutrient Elements and Thiols in Seedlings of Wrightia arborea (Dennst.) Mabb. Int J Phytoremediation. 2015;17(1-6):128-134. doi:10.1080/15226514.2013.862205
Hordeum brachyantherumMeadow barleyHordeum brachyantherumMeadowbarley.jpgTrichloroethylene (TCE)  and by-productsN/AN/A1) Jordahl, J., R. Tossell, M. Barackman and G. Vogt (2003) Phytoremediation for Hydraulic Control and Remediation: Beale 2) Air Force Base and Koppel Stockton Terminal. Abstracts from US EPA International Applied Phytotechnologies Workshop March 3-5, 2003 Chicago, IL 3) http://www.flickr.com/photos/plant_diversity/6134787290/(Photo Source)Hydraulic control. Hardiness Zones 7-10NNN
Hordeum vulgare Common BarleyIMG_1324CommonBarley.jpgAluminumN/AN/A1) McCutcheon & Schnoor 2003, Phytoremediation. New Jersey, John Wiley & Sons pg 891. 2) http://www.flickr.com/photos/dag_endresen/4998910692/ (Photo Source) Hardiness zone 8.NNN
Hordeum vulgarelBarleyStrontiumAccumulatorN/A1) McCutcheon & Schnoor 2003, Phytoremediation. New Jersey, John Wiley & Sons pg 891. 2) Qi L, Qin X, Li FM, et al. Uptake and distribution of stable strontium in 26 cultivars of three crop species: oats, wheat, and barley for their potential use in phytoremediation. Int J Phytoremediation. 2015;17(1-6):264-271. doi:10.1080/15226514.2014.898016Accumulation rates (in mg/kg dry weight): 1000. 25 records of plants. Hardiness zone 8NNN
Hydrangea macrophyllaHydrangeaHydrangeaHydrangea.jpgAluminumIndicatorN/A1) http://en.wikipedia.org/wiki/List_of_hyperaccumulators 2) http://www.flickr.com/photos/27307412@N07/5147191809/(Photo Source)Does well in morning sun and afternoon shade. Certain cultivars do well in full sun. Used as an indicator plant. Flower changes to a blue color when Aluminum is added the soil. Hardy from zones 4 to 7. NNN
Hydrocharis morsus-ranaeFrogbitIron, Manganese, ZincAccumulatorPhytoaccumulationEngin MS, Uyanik A, Kutbay HG. Accumulation of heavy metals in water, sediments and wetland plants of kizilirmak delta (samsun, Turkey). Int J Phytoremediation. 2015;17(1-6):66-75. doi:10.1080/15226514.2013.828019
Hydrocharis morsus-ranae L.European Frogbit EuropeanFrogbitEuropeanFrogbit.jpgChromium, Copper, Lead, Manganese, MercuryN/AN/A1) McCutcheon & Schnoor 2003, Phytoremediation. New Jersey, John Wiley & Sons, page 898. 2) http://www.flickr.com/photos/28113115@N00/2809337443/ (Photo Source)Planting Zone: 5NNN
Hydrocotyle vulgarisMarsh pennywortPrometrynTolerantNi J, Sun SX, Zheng Y, Datta R, Sarkar D, Li YM. Removal of prometryn from hydroponic media using marsh pennywort (Hydrocotyle vulgaris L.). Int J Phytoremediation. 2018;20(9):909-913. doi:10.1080/15226514.2018.1448359
Hyrdilla verticillataWaterthymesArsenic, Cadmium, Copper, Nickel, Lead, ZincAccumulator of metals, Hyperaccumulator of metalsN/A1) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 2) Phytoremediation of Radio¬nuclides. Dushenkov et al. 1998, Negri and Hinchman 2000, Huang et al. 1998, et al. 1997, Negri and Hinchman 2000, Dushenkov et al. 1998. http://rydberg.biology.colostate.edu/Phytoremediation/2000/Lawra/BZ580.htm 3) Lu G, Wang B, Zhang C, et al. Heavy metals contamination and accumulation in submerged macrophytes in an urban river in China. Int J Phytoremediation. 2018;20(8):839-846. doi:10.1080/15226514.2018.1438354Comes from Southern Asia but introduced and spreading as the troublesome weed in the warmer states of the U.S. Hardy to zone 5NNN
Ilex cornutaCarisa HollyPetroleumTolerantN/AShrub. Variety: Carisa. Hardiness zone 7-9.NNN
Impatiens bicolor royaleRoyal ImpatiensChromium, Nickel, Iron, Manganese, Cobalt, Copper, ZincAccumulatorNawab J, Khan S, Shah MT, Khan K, Huang Q, Ali R. Quantification of Heavy Metals in Mining Affected Soil and Their Bioaccumulation in Native Plant Species. Int J Phytoremediation. 2015;17(9):801-813. doi:10.1080/15226514.2014.981246
Impatients wallerianaImpatiensBenzene, ChromiumAccumulator, HyperaccumulatorPhytoextraction, Volatilization1) Lai HY, Cai MC. Effects of extended growth periods on subcellular distribution, chemical forms, and the translocation of cadmium in Impatiens walleriana. Int J Phytoremediation. 2016;18(3):228-234. doi:10.1080/15226514.2015.1073677 2) Campos V, Lessa SS, Ramos RL, Shinzato MC, Medeiros TAM. Disturbance response indicators of Impatiens walleriana exposed to benzene and chromium. Int J Phytoremediation. 2017;19(8):709-717. doi:10.1080/15226514.2017.1284745
Inbred B37 Zea maysCorn (b37 Maize)CadmiumAccumulatorPhytoextraction(Phyto Textbook) Broadhurst, C.l., Chaney, R. L., Davis, A. P., Cox, A., Kumar, K., Reeves, R. D., and Green, C. E. 2013 Growth and cadmium phytoextraction by Swiss chard, maize, rice, Noccaea caerulescens and Alyssum murale in pH adjusted biosolids amended soils. International Journal of Phytoremediation, DOI, 10.1080/15226514.2013.828015.
Inga laurinaSacky Sac BeanZinc, Cadmium, Copper, PalladiumTolerantAccumulatorMeyer ST, Castro SR, Fernandes MM, Soares AC, de Souza Freitas GA, Ribeiro E. Heavy-metal-contaminated industrial soil: Uptake assessment in native plant species from Brazilian Cerrado. Int J Phytoremediation. 2016;18(8):832-838. doi:10.1080/15226514.2016.1146224
Ipomoea carneaPink Morning GloryIron, Manganese, Copper, Lead, Chromium, Nickel, CadmiumAccumulatorPhytoextractionPandey SK, Bhattacharya T, Chakraborty S. Metal phytoremediation potential of naturally growing plants on fly ash dumpsite of Patratu thermal power station, Jharkhand, India. Int J Phytoremediation. 2016;18(1):87-93. doi:10.1080/15226514.2015.1064353
Iris dichotoma PallBlackberry LilyPetroleum hydrocarbons PhytodegredationCheng L, Wang Y, Cai Z, Liu J, Yu B, Zhou Q. Phytoremediation of petroleum hydrocarbon-contaminated saline-alkali soil by wild ornamental Iridaceae species. Int J Phytoremediation. 2017;19(3):300-308. doi:10.1080/15226514.2016.1225282
Iris germanica Bearded IrisIMG_8044BeardedIris.jpgAluminum, Arsenic, Cadmium, Copper, Flourine, Manganese, ZincHyperaccumulator, Accumulator of arsenicRhizofiltration1) University of Minnesota Sustainable Urban Landscape Information Series. http://www.sustland.umn.edu/design/water4.html 2) http://www.flickr.com/photos/jeff_u/4636253576/ (Photo Source)Flowering plant. Hardiness zones 3-10NNN
Iris lactea PallJapanese Water IrisPetroleum hydrocarbons PhytodegredationCheng L, Wang Y, Cai Z, Liu J, Yu B, Zhou Q. Phytoremediation of petroleum hydrocarbon-contaminated saline-alkali soil by wild ornamental Iridaceae species. Int J Phytoremediation. 2017;19(3):300-308. doi:10.1080/15226514.2016.1225282
Iris pseudacorus Pale Yellow IrisPaleYellowIrisPaleYellowIris.jpgAluminum, Arsenic, Atrazine, Beryllium, Cadmium, Copper, ManganeseAccumulator of Cadmium, Manganese, Aluminum, Arsenic, and Beryllium. Hyperaccumulator of CopperRhizodegradation, Phytodegradation1) http://www.flickr.com/photos/valdelobos/4176838274/ (Photo Source) 2) (Phyto Textbook) WAng, Q., Zhang, W., Li, L., and Xiao, B. 2012. Phytoremediation of atrazine by three emergent hydrophytes in a hydroponic system. Water Science and Technology66 (6), pp. 1282-1288.Heavy Metals Type: Emergent/Upland Height: 1-3 ft. Flower Color: Bright yellow or cream-colored 3 years to mature before flowering, regenerates vegetative via rhizomes, absorb heavy metals, Provides erosion control.Semi-anaerobic and resistant, good for rNNN
Iris pseudacorus L.Yellow FlagChromium, NickelXu B, Yu S, Ding J, Wu S, Ma J. Metal-Dependent Root Iron Plaque Effects on Distribution and Translocation of Chromium and Nickel in Yellow Flag (Iris pseudacorus L.). Int J Phytoremediation. 2015;17(1-6):175-181. doi:10.1080/15226514.2013.876965
Isoetes lacustrisLake QuillwortLakeQuillwortLakeQuillwort.jpgCopper, LeadN/AN/A1) W. Carl Taylor @ USDA-NRCS plant database. (1992) http://wisplants.uwsp.edu/scripts/detail.asp?SpCode=ISOLAC 2) April 2003, Jeremiah Knuth, Department of Civil Engineering, Colorado State University.http://rydberg.biology.colostate.edu/Phytoremediation/2003/Knuth/home.htm 3) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 4) http://www.flickr.com/photos/alexlomas/2943656569/v (Photo Source) Growth Rate: Rapid, typically two flushes of new leaves each year. Duration, Growth Habit: Perennial, Graminoid. Moisture Use: High. Habitat: Submerged in soft water in 3’ to 10’ of water; in sandy, gravelly soil. Hardy to USDA Zone 3NNN
Jatropha curcas L with Acaulospora sp. fungusSpurgeCadmium, Lead, ZincAccumulatorPhytostabilizationGonzález-Chávez MD, Carrillo-González R, Hernández Godínez MI, Evangelista Lozano S. Jatropha curcas and assisted phytoremediation of a mine tailing with biochar and a mycorrhizal fungus. Int J Phytoremediation. 2017;19(2):174-182. doi:10.1080/15226514.2016.1207602
Juncus balticusBaltic RushBalticRushBalticRush.jpgCopperN/AN/A1) Gallagher, J.L and H.V. Kibby, 1980. Marsh plants as vectors in trace metal transport in Oregon tidal marshes. American Journal of Botany, 67: 1069-1074 2) http://www.flickr.com/photos/plant_diversity/6442158653/ (Photo Source)Also known as Wire Rush. Perennial. Hardiness zone 3. Fast growth rate. NNN
Juncus effusesSoft Rush Soft rushesSoftRush.jpgAmmonia, Anthracene, Arsenic, Nitrate, Nitrogen, PhosphateN/AN/A1) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant_species_phyto.pdf http://www.flickr.com/photos/gruts/5974723340/" Soft rushes by Richard Carter, on Flicker http://farm7.staticflickr.com/6143/5974723340_23d59905f0jpgRoots: Stout rhizomes. Qualities: Densely clumped emergent perennial herb. Shallow water of 12" of inundation or less to wet/saturated conditions, but can tolerate somewhat drier condi-tions. Full to part sun. Qualities: Deep fibrous root systemNNN
Juncus maritimusSea rushPetroleum hydrocarbons AccumulatorRhizoremediation(Phyto Textbook) Ribeiro, H., Almeida, C., Mucha, A., ad Bordalo, A. 2013. Influence of different salt marsh plants on hydrocarbon degrading microorganisms abundance throughout a phenological cycle. International Journal of Phytoremediation 15 (3), pp. 245-256.
Juniperus procumbensJuniperPetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Shrub. Variety: Green Mound. Hardiness zone 6-8NNN
Lagerstroemia faurieiJapanese Crape MyrtyleCadmiumAccumulatorPhytoextractionWang Y, Gu C, Bai S, et al. Cadmium accumulation and tolerance of Lagerstroemia indica and Lagerstroemia fauriei (Lythraceae) seedlings for phytoremediation applications. Int J Phytoremediation. 2016;18(11):1104-1112. doi:10.1080/15226514.2016.1183581
Lagerstroemia floribundaCrepe myrtleLead AccumulatorPhytostabilization(Phyto Textbook) Meeinkuirt, W., Pokethitiyook, P., Kruatrachue, M., Tanhan, P., and Chairyarat, R. 2012. Phytostabilization of a Pb-contaminated mine tailing by various tree species in pot and field trial experiments. International Journal of Phytoremediation 14 (9), pp. 925-938.
Lagerstroemia indicaDwarf Crape MyrtleCadmiumAccumulator, TolerantPhytoextraction1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003 2) Wang Y, Gu C, Bai S, et al. Cadmium accumulation and tolerance of Lagerstroemia indica and Lagerstroemia fauriei (Lythraceae) seedlings for phytoremediation applications. Int J Phytoremediation. 2016;18(11):1104-1112. doi:10.1080/15226514.2016.1183581Shrub. Variety: Tightwad Red. hardiness zone 4-9., Japanese Crape MyrtleNNN
Lamarckia aurea L. MoenchGolden Dogs tailLead, Zinc, Copper ,CadmiumAccumulatorPhytoextraction, phytostabilizationMidhat L, Ouazzani N, Esshaimi M, Ouhammou A, Mandi L. Assessment of heavy metals accumulation by spontaneous vegetation: Screening for new accumulator plant species grown in Kettara mine-Marrakech, Southern Morocco. Int J Phytoremediation. 2017;19(2):191-198. doi:10.1080/15226514.2016.1207604
Lantana camaraVerbenaIron, Manganese, Copper, Lead, Chromium, Nickel, CadmiumAccumulatorPhytoextractionPandey SK, Bhattacharya T, Chakraborty S. Metal phytoremediation potential of naturally growing plants on fly ash dumpsite of Patratu thermal power station, Jharkhand, India. Int J Phytoremediation. 2016;18(1):87-93. doi:10.1080/15226514.2015.1064353
Lantana montevidensisLantana montevidensisPetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Groundcover. Variety: New Gold. USDA Hardiness Zone: 10 to 11.NNN
LegumeLegumeLegumeLegume.jpgTrichloroethylene (TCE)  and by-productsN/APhytodegradation, Rhizodegradation1) Walton, B.T and Anderson, T.A. 1990. "Microbial Degradation of Trichloroethylene in the Rhizosphere: Potential Application to Biological Remediation of Waste Sites". Applied and Environmental Microbiology, Apr 1990, p. 1012-1016. Kim, RH et. Al. (2003) Remediation of VOC-Contaminated Groundwater at the Savannah River Site by Phyto-Irrigation. Abstracts from US EPA International Applied Phytotechnologies Workshop March 3-5, 2003 Chicago, IL 2) http://www.flickr.com/photos/29271012@N08/3719478704/(Photo Source)Hydraulic controlNNN
Lemna gibbaGibbous DuckweedChromium, CadmiumHyperaccumulatorChaudhary E, Sharma P. Chromium and cadmium removal from wastewater using duckweed - Lemna gibba L. and ultrastructural deformation due to metal toxicity. Int J Phytoremediation. 2019;21(3):279-286. doi:10.1080/15226514.2018.1522614
Lemna minorLesser DuckweedLesserDuckweedLesserDuckweed.jpgCadmium, Copper, Lead, NickelAccumulatorPhytoextraction1) USDA NRCS Plant Materials Center, Manhattan, Kansas & Kansas State University, Forestry Researchhttp://plants.usda.gov/factsheet/pdf/fs_sani.pdf 2) April 2003, Jeremiah Knuth, Department of Civil Engineering, Colorado State University.http://rydberg.biology.colostate.edu/Phytoremediation/2003/Knuth/home.htm 3) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 4) Journal of Environmental Science and Technology 4 (2): 118-138, 2011 ISSN 1994-7887/ DOI: 10. 3923/jest.2011.118.138 http://scialert.net/qredirect.php?doi=jest.2011.118.138&linkid=pdf (Source for Chromium) 5) http://www.bp.com/liveassets/bp_internet/globalbp/STAGING/global_assets/downloads/B/BP_magazine_issue1_2006_casper_wonderland.pdf 6) http://tinyurl.com/7cj6ems (Photo Source) 7) (Phyto Textbook) Teixeira, S., Vieira, M. N., Marques, J. E., USDA hardiness zones 3 through 8NNN
Lemna minuta KunthDuckweedDirect blue 129 diazo dye (DB129)TolerantPhytoaccumulationChiudioni F, Trabace T, Di Gennaro S, Palma A, Manes F, Mancini L. Phytoremediation applications in natural condition and in mesocosm: The uptake of cadmium by Lemna minuta Kunth, a non-native species in Italian watercourses. Int J Phytoremediation. 2017;19(4):371-376. doi:10.1080/15226514.2016.1225290
Lepidium sativum L.Garden cressMercuryAccumulatorPhytoextractionSmolinska B, Szczodrowska A, Leszczynska J. Protein changes in Lepidium sativum L. exposed to Hg during soil phytoremediation. Int J Phytoremediation. 2017;19(8):765-773. doi:10.1080/15226514.2017.1284754
Lespedeza cuneataChinese BushcloverZinc, Lead ,CopperAccumulatorShi X, Chen YT, Wang SF, et al. Phytoremediation potential of transplanted bare-root seedlings of trees for lead/zinc and copper mine tailings. Int J Phytoremediation. 2016;18(11):1155-1163. doi:10.1080/15226514.2016.1189399
Leucaena leucocephalaRiver tamarindZinc, CadmiumAccumulator/TolerantPhytostabilization1) (Phyto Textbook) Meeinkuirt, W., Pokethitiyook, P., Kruatrachue, M., Tanhan, P., and Chairyarat, R. 2012. Phytostabilization of a Pb-contaminated mine tailing by various tree species in pot and field trial experiments. International Journal of Phytoremediation 14 (9), pp. 925-938. 2) Rangel WM, Thijs S, Janssen J, et al. Native rhizobia from Zn mining soil promote the growth of Leucaena leucocephala on contaminated soil. Int J Phytoremediation. 2017;19(2):142-156. doi:10.1080/15226514.2016.1207600
Ligustrum japonicumWaxleaf LigustrumPetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Shrub. Variety: Texana. USDA Hardiness Zone: 7B - 10ANNN
Ligustrum lucidumPrivetCadmiumAccumulator/TolerantPhytostabilization1) Kang W, Bao J, Zheng J, Xu F, Wang L. Phytoremediation of heavy metal contaminated soil potential by woody plants on Tonglushan ancient copper spoil heap in China. Int J Phytoremediation. 2018;20(1):1-7. doi:10.1080/15226514.2014.950412 2) Zeng P, Guo Z, Cao X, Xiao X, Liu Y, Shi L. Phytostabilization potential of ornamental plants grown in soil contaminated with cadmium. Int J Phytoremediation. 2018;20(4):311-320. doi:10.1080/15226514.2017.1381939
Limoniastrum monopetalumLimoniastrumCadmium, LeadTolerantPhytoaccumulation, Phytoextraction, Phytoexcretion(Phyto Textbook) Manousaki, E., Galanaki, K., Papadimitriou, L., and Kalogerakis, N. 2014. Metal Phytoremediation by the Halophyte Limoniastrum monopetalum (L.) Boiss: Two Contrasting Ecotypes. International Journal of Phytoremediation 16 (7-8), pp. 755-769.
Liquidambar formosana HanceChinese Sweet GumZinc, Lead ,CopperAccumulatorShi X, Chen YT, Wang SF, et al. Phytoremediation potential of transplanted bare-root seedlings of trees for lead/zinc and copper mine tailings. Int J Phytoremediation. 2016;18(11):1155-1163. doi:10.1080/15226514.2016.1189399
Liquidambar styraciflua American Sweet GumAmericanSweetGumAmericanSweetGum.jpgCesium, Plutonium, Uranium, Vinyl ChlorideHyperacummulator, AccumulatorPhytodegradation, Rhizodegradation1) Phytoremediation of Radio¬nuclides. Dushenkov et al. 1998, Negri and Hinchman 2000, Huang et al. 1998, et al. 1997, Negri and Hinchman 2000, Dushenkov et al. 1998. http://rydberg.biology.colostate.edu/Phytoremediation/2000/Lawra/BZ580.htm 2)http://www.flickr.com/photos/bambolia/4514253818/ (Photo Source)A native of the eastern U.S grows to 60 ft and is tolerant of damp soils. Has shown promise for phytorememdiation of percholorate. Tree able to accumulate radionuclides. Hardiness zones 5-9NNN
Liriodendron tulipiferaTulip TreeTulipTreeTulipTree.jpgCesium, Formaldehyde, Plutonium, Polychlorinated Biphenyl (PCB), Strontium, Trichloroethylene (TCE)  and by-products, Vinyl Chloride, XyleneAccumulator N/A1) Phytoremediation of Radio nuclides. Dushenkov et al. 1998, Negri and Hinchman 2000, Huang et al. 1998, et al. 1997, Negri and Hinchman 2000, Dushenkov et al. 1998. http://rydberg.biology.colostate.edu/Phytoremediation/2000/Lawra/BZ580.htm 2) http://tinyurl.com/7u8w2zb(Photo Source) 3) Ferro, A., Chard, B., Gefell, M., Thompson, B., and R. Kjelgren. 2000"Phytoremediation of Organic Solvents in Groundwater: Pilot Study at a Superfund Site. In: G. Wickramanayake, A. Gavaskar, B. Alleman, and V. Magar (eds.) Bioremediation and Phytoremediation of Chlorinated and Recalcitrant Compounds, p461-466. Battelle Press, Columbus, Ohio.; Ferro, A., Kennedy, J., Kjelgren, R., Rieder, J., and S. Perrin. 1999. "Toxicity Assessment of Volatile Organic Compounds in Poplar Trees". International Journal of Phytoremediation. 1(19-17Accumulator of Radionuclides. Rapid growth rate, minumin root depth is 32 inches. Hardiness Zones: Zones 4 - 9.NNN
Liriope muscariAztec grassPetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Groundcover, Perennial. Evergreen. Variety: also Ophiopogon. Hardiness zones 7-11. Light needs: partial sun. Moderate growth rate. Purple flower color. Blooms in the summer. Requires regular watering. Deer Resistant. Attractive bark. NNN
Littorella uniflora American ShoreweedCopper, LeadN/AN/A1) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 2) April 2003, Jeremiah Knuth, Department of Civil Engineering, Colorado State University.http://rydberg.biology.colostate.edu/Phytoremediation/2003/Knuth/home.htm Growth Rate: Slow; Duration: Perennial; Moisture Use: High; Shade Tolerance: Low; Habitat: Shores and submerged in depths up to 3 feet or more.NNN
Llex cornutaDwarf Burford HollyPetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Shrub. Variety: Burfordii Nana. Hardiness zone 7-10NNN
Llex ssp.HollyCadmiumAccumulatorN/A1) Institute for Environmental Research and education (IERE). (2003 January). Vashon Heavy Metal Phytoremediation Study Sampling and Analysis Strategy (DRAFT). http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdfEvergreen shrub or tree. USDA hardiness zones 5 through 9NNN
Llex vomitoriaYaupon HollyPetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Shrub. Variety: Nana. USDA Hardiness Zones 7A-9BNNN
Lolium multiflorumRyegrass RyegrassRyegrass.jpgCadmiumAccumulatorRhizodegradation, Phytovolitization, Phytoextraction1) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 2) Phytoremediation of Radio¬nuclides. Dushenkov et al. 1998, Negri and Hinchman 2000, Huang et al. 1998, et al. 1997, Negri and Hinchman 2000, Dushenkov et al. 1998. http://rydberg.biology.colostate.edu/Phytoremediation/2000/Lawra/BZ580.htm 3) http://www.flickr.com/photos/plant_diversity/3880473941/(Photo Source) 4) Salama AK, Osman KA, Gouda NA. Remediation of lead and cadmium-contaminated soils. Int J Phytoremediation. 2016;18(4):364-367. doi:10.1080/15226514.2015.1109597 Rygrass is one of nature’s greatest phytovolatilazation device. It takes up toxins well and molecularly changes them to become safe particles in the air. Perennial grass shown to uptake nutrients and to significantly enhance degradation of TPH and NNN
Lolium perennePerennial RyegrassPerennialRyegrassPerennialRyegrass.jpgArsenic, Copper, Lead, ZincAccumulator/TolerantPhytostabilization, Phytodegradation, Phytoextraction, Microbial Degradation1) Oyler, J. Blue Mountain Superfund Remediation Project, Palmerton, PA. Powerpoint presentation. June 10, 2004. ITRC Phytotechnologies conference. 2) Groom, C.A, A. Halasz, L. Paquet, N. Morris, L. Olivier, C. Dubois and J. Hawari (2002) Accumulation of HMX (Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) in Indigenous and Agricultural Plants Grown in HMX- Contaminated Anti-Tank Firing-Range Soil. Environ. Sci. & Technol. 2002, Vol 36, Issue 1 p112-118 3) http://www.flickr.com/photos/plant_diversity/3932973320/(Photo Source) 4) (Phyto Textbook) Fu, D., Teng, Y., Shen, Y., Sun, M., Tu, C., Luo, Y., Li, Z., and Christie, P. 2012. Dissipation of polycyclic aromatic hydrocarbons and microbial activity in a field soil planted with perennial ryegrass. Frontiers of Envrionmental Science and Engineering 6 (3) pp. 330-335. 5) (Phyto Textbook) Wang, K., Huang, H., Zhu, Z., Li, T., He, Z., Yang, X., and Alva, A. 2013. Phytoextraction of Metals and Rhizoremediation of PAHs in Co-ContaminateHardiness zone: 3-9NNN
Lolium perenne - Fiesta 4Rye grassTotal petroleum hydrocarbonsRhizodegredationMcintosh, Patrick, et al. “Breakdown of Low-Level Total Petroleum Hydrocarbons (TPH) in Contaminated Soil Using Grasses and Willows.” International Journal of Phytoremediation, vol. 18, no. 7, 2015, pp. 656–663., doi:10.1080/15226514.2015.1109598.
Lolium perenne L.Perennial Rye GrassPhthalate estersAccumulatorPhytoextraction(Phyto Textbook) Ma, T. T., Teng, Y., Luo, Y. M., and Christie, P. 2013. Legume-grass intercropping phytoremediation of phthalic acid esters in soil near an electronic waste recycling site: a field study. International Journal of Phytoremediation 15 (2), pp. 154-167.
Loropetalum chinense var. rubrumChinese fringe flowerCadmiumPhytostabilizationZeng P, Guo Z, Cao X, Xiao X, Liu Y, Shi L. Phytostabilization potential of ornamental plants grown in soil contaminated with cadmium. Int J Phytoremediation. 2018;20(4):311-320. doi:10.1080/15226514.2017.1381939
Lotus corniculatusEmpire Bird's-foot TrefoilEmpireBirdsfootTrefoilEmpireBirdsfootTrefoil.jpgCadmium, Polycyclic Aromatic Hydrocarbon (PAH), ZincAccumulatorRhizodegradation1) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 2) Azous, A. L., and Horner. R. R (Eds). (2001). Wetlands and Urbanization: Implications for the Future. Bocoa Raton, FL: Lewis Publishers. 3) http://www.flickr.com/photos/10770266@N04/5415492876/ (Photo Source) An introduced European annual herb. When mixed with grasses, was shown to reduce TPH and PAH’s in soils. This plant is generally not recommended for introduction into con¬structed wet lands of the Puget Sound Region.NNN
Lupinus albusWhite LupinWhiteLupinWhiteLupin.jpgArsenic, NitrogenN/ARhizoaccumulation1) Esteban, E, Vazquez, S and Carpena, R. (2003) White Lupin Response to Arsenate. University of Madrid, Spain 2) http://www.flickr.com/photos/dugspr/527049571/(Photo Source)A nitrogen fixing legume capable of growth in acidic soils with low nutrient availability. A recent study indicated an ability to take up arsenic, primarily stored in the root structure. A number of lupine varieties are native to NW, including: Lupinus arNNN
Lycopersicon esculentumtomatoIron, Lead, ManganeseAccumulatorPhytostabilizationEid EM, Shaltout KH. Bioaccumulation and translocation of heavy metals by nine native plant species grown at a sewage sludge dump site. Int J Phytoremediation. 2016;18(11):1075-1085. doi:10.1080/15226514.2016.1183578
Lythrum salicariaPurple loosestrifeAtrazineAccumulatorPhytodegradation(Phyto Textbook) WAng, Q., Zhang, W., Li, L., and Xiao, B. 2012. Phytoremediation of atrazine by three emergent hydrophytes in a hydroponic system. Water Science and Technology66 (6), pp. 1282-1288.
Macfadyena unguis-catiYellow Trumpet VinePetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Vine. USDA Cold Hardiness Zones, 9 - 11NNN
Maclura pomifera Osage OrangeOsageOrangeOsageOrange.jpgPolychlorinated Biphenyl (PCB)N/ARhizodegradation1) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 2) http://www.flickr.com/photos/windsordi/4083850783/(Photo Source)A deciduous tree that can withstand heat, cold, wind, drought, and poor soil. Roots have been shown to stimulate PCB-degrading bacteria in the soil. USDA hardiness zones: 5 through 9ANNN
Malachium aquaticumWater chickweedCadmiumAccumulatorPhytoextractionHe J, Lin L, Ma Q, et al. Uniconazole (S-3307) strengthens the growth and cadmium accumulation of accumulator plant Malachium aquaticum. Int J Phytoremediation. 2017;19(4):348-352. doi:10.1080/15226514.2016.1225287
Medicago sativaAlfalfaAlfalfaAlfalfa.jpgZincAccumulator, BioaccumulatorPhytodegradation, Phytoextraction, Phytostabilization1) United States, E. P. (2005). Road Map to Understanding Innovative Technology Options for Brownfield’s Investigation and Cleanup. (Fourth ed.). Washington, DC: U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Re¬sponse, Office of Superfund Remediation and Technology Innovation.(Source for PAH) 2)http://www.flickr.com/photos/daryl_mitchell/2646191862/(Photo Source) 3) Salehi-Lisar SY, Deljoo S, Harzandi AM. Fluorene and Phenanthrene Uptake and Accumulation by Wheat, Alfalfa and Sunflower from the Contaminated Soil. Int J Phytoremediation. 2015;17(12):1145-1152. doi:10.1080/15226514.2015.1045123 4) Zhu S, Ma X, Guo R, et al. A field study on heavy metals phytoattenuation potential of monocropping and intercropping of maize and/or legumes in weakly alkaline soils. Int J Phytoremediation. 2016;18(10):1014-1021. doi:10.1080/15226514.2016.1183570 5) Teng Y, Sun X, Zhu L, Christie P, Luo Y. Polychlorinated biphenyls in alfalfa: Accumulation, sorption and specExcellent bioaccumulator because of extremely long roots. As long as 50 feet. Groundcover, Perennial. Hardiness zones 3-11 NNN
Megathyrsus maximus cvs. Aruana & TanzaniaGuinea grassCadmiumAccumulator, TolerantPhytoextraction1) Nardis BO, Silva EB, Grazziotti PH, Alleoni LRF, Melo LCA, Farnezi MMM. Availability and zinc accumulation in forage grasses grown in contaminated soil. Int J Phytoremediation. 2018;20(3):205-213. doi:10.1080/15226514.2017.1365347 2) Silva EB, Fonseca FG, Alleoni LR, Nascimento SS, Grazziotti PH, Nardis BO. Availability and toxicity of cadmium to forage grasses grown in contaminated soil. Int J Phytoremediation. 2016;18(9):847-852. doi:10.1080/15226514.2016.1146225
Melastoma malabathricum L.Blue TongueLead, ArsenicAccumulator, Precipitator Phytoaccumulation, Phytostabilization, Phytoextraction1) Toshihiro Watanabe, Mitsuru Osaki, Teruhiko Yoshihara and Toshiaki Tadano (April 1998). "Distribution and chemical speciation of aluminum in the Al accumulator plant, Melastoma malabathricum L.". Plant and Soil 201 (2): 165–173. doi:10.1023/A:1004341415878. http://www.springerlink.com/content/t7080538256p0303/. 2) (Phyto Textbook) Selamat, S. N., Abdullah, S. R. S., and Idris, M. 2013. Phytoremediation of lead (Pb) and Arsenic (As) by Melastoma malabathricum L. from Contaminated Soil in Separate Exposure. International Journal of Phytoremediation 16, pp. 694-703.Also called Native Lassiandra. Aluminum concentrations in young leaves, mature leaves, old leaves, and roots were found to be 8.0, 9.2, 14.4, and 10.1 mg g1, respectively.NNN
Melia azedarachChinaberry TreeCopper, Lead, CadmiumAccumulator/TolerantKang W, Bao J, Zheng J, Xu F, Wang L. Phytoremediation of heavy metal contaminated soil potential by woody plants on Tonglushan ancient copper spoil heap in China. Int J Phytoremediation. 2018;20(1):1-7. doi:10.1080/15226514.2014.950412
Melilotus officinalisYellow Sweet CloverYellowSweetCloverYellowSweetClover.jpgHydrocarbonsN/ARhizodegradation1) Christensen-Kirsh, K.M (1996). Phytoremediation and wastewater effluent disposal: Guidelines for landscape planners and designers. Master’s Project, Department of Landscape. University of Oregon. 2) April 2003, Jeremiah Knuth, Department of Civil Engineering, Colorado State University.http://rydberg.biology.colostate.edu/Phytoremediation/2003/Knuth/home.htm 3) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 4) http://tinyurl.com/7wyga55 (Photo Source) 5) USDA NRCS Plant Materials Center, Manhattan, Kansas & Kansas State University, Forestry Researchhttp://plants.usda.gov/factsheet/pdf/fs_sani.pdf (Source for Nickel, PAH, and Silver) Growth Rate: Rapid, mature height of 5’. Duration, Growth Habit: Annual, Biennial, Perennial, Herb/Forb. Drought Tolerance: High. Moisture Use: Medium. Salinity Tolerance: High. Shade Tolerance: Intolerant. Habitat: Well adapted to clay and silt moNNN
Melilotus sulcata Desf.Lead, Zinc, Copper ,CadmiumAccumulatorPhytoextraction, phytostabilizationMidhat L, Ouazzani N, Esshaimi M, Ouhammou A, Mandi L. Assessment of heavy metals accumulation by spontaneous vegetation: Screening for new accumulator plant species grown in Kettara mine-Marrakech, Southern Morocco. Int J Phytoremediation. 2017;19(2):191-198. doi:10.1080/15226514.2016.1207604
Millettia reticulataEvergreen WisteriaPetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Vine. USDA Hardiness Zone 7 - 10NNN
Miscanthus giganteusMiscanthusCopper, Lead, M, Cadmium, ZincTolerant/AccumulatorPhytoextraction, Phytostabilization1) (Phyto Textbook) Techer, D., Martinez-Chois, C., Laval-Gilly, P., Henry, S>, Bennasroune, A., D'Iannocenzo, M., and Falla, J. 2012. Assessment of Miscanthus× giganteus for rhizoremediation of long term PAH contaminated soils. Applied Soil Ecology 62, 99. 42-49. 2) (Phyto Textbook) Kocon, A., and Matyka, M. 2012. Phytoextractive potential of Miscanthus giganteus and Sida hermaphrodita growing under moderate pollution of soil with Zn and Pb. Journal of Food, Agriculture and Environment 10 (2), pp. 1253-1256. 3) Zhang J, Yang S, Huang Y, Zhou S. The Tolerance and Accumulation of Miscanthus Sacchariflorus (maxim.) Benth., an Energy Plant Species, to Cadmium. Int J Phytoremediation. 2015;17(1-6):538-545. doi:10.1080/15226514.2014.922925 4) Bang J, Kamala-Kannan S, Lee KJ, et al. Phytoremediation of Heavy Metals in Contaminated Water and Soil Using Miscanthus sp. Goedae-Uksae 1. Int J Phytoremediation. 2015;17(1-6):515-520. doi:10.1080/15226514.2013.862209
Monochoria hastataOval-leafed pondweedMagnesium, Iron, Contaminants of concern (COC)AccumulatorPhytostabilizationHazra M, Avishek K, Pathak G. Phytoremedial Potential of Typha latifolia, Eichornia crassipes and Monochoria hastata found in Contaminated Water Bodies Across Ranchi City (India). International Journal of Phytoremediation. 2015 ;17(9):835-840. DOI: 10.1080/15226514.2014.964847.
Moraea iridioides (D.iridioides)African IrisPetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003 2) http://www.floridata.com/ref/d/diet_iri.cfmThis shrub is also often called Fortnight Lily in Florida. Evergreen perennials. They have leathery sword shaped leaves up to 2 ft in length but only 0.75 in wide. Tolerant of poor soils, but not tolerant of salty conditions. Light: dappled shade to nearNNN
Morus albaMulberryHistidine, NickelAccumulator, Hyperaccumulator1) Huang RZ, Jiang YB, Jia CH, Jiang SM, Yan XP. Subcellular distribution and chemical forms of cadmium in Morus alba L. Int J Phytoremediation. 2018;20(5):448-453. doi:10.1080/15226514.2017.1365344 2) Ozen SA, Yaman M. Examination of correlation between histidine and nickel absorption by Morus L., Robinia pseudoacacia L. and Populus nigra L. using HPLC-MS and ICP-MS. Int J Phytoremediation. 2016;18(8):794-800. doi:10.1080/15226514.2015.1131243
Morus alba "Platanifolia"Fruitless MulberryAnthracene, ArsenicN/AN/A1) Basel Al-Yousfi A. et al. (2000). "Phytoremediation-The Natural Pump-and-Treat and Hydraulic Barrier System." Practice Periodicals of Hazardous, Toxic, and Radioactive Waste Management, April 2000, p 73-77.USDA Zone 4-8NNN
Morus rubraRed Mulberry Tree Red Mulberry, MoralRedMulberryTree.jpgAnthracene, Arsenic, Polychlorinated Biphenyl (PCB), Polycyclic Aromatic Hydrocarbon (PAH)N/AN/A1) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 2) http://www.flickr.com/photos/maryburns/4523852436/(Photo Source)The mulberry is one of a few trees producing phenolic com¬pounds stimulating PCB-degrading bacteria, and thus enhance the degradation of this pollutant Mulberry has also been shown in the lab to degrade PAH’s. Hardy from zones 5-9.NNN
Myriophyllum spicatumEurasian watermilfoilArsenic, Cadmium, Copper, Nickel, Lead, ZincHyperaccumulatorLu G, Wang B, Zhang C, et al. Heavy metals contamination and accumulation in submerged macrophytes in an urban river in China. Int J Phytoremediation. 2018;20(8):839-846. doi:10.1080/15226514.2018.1438354
Myriophyllum verticillatumWhorl-leaf WatermilfoilIron, Chromium, Zinc, Nickel, CopperAccumulatorSapci Z, Ustun EB. Heavy Metal Uptakes by Myriophyllum verticillatum from Two Environmental Matrices: The Water and the Sediment. Int J Phytoremediation. 2015;17(1-6):290-297. doi:10.1080/15226514.2014.898022
Nandina domesticaHeavenly BambooPetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Shrub. Variety: Jaytee Harbor Belle. hardiness zones: 6 - 11NNN
Native CottonwoodNative CottonwoodTrichloroethylene (TCE)  and by-productsN/AN/A1) Jordahl, J., R. Tossell, M. Barackman and G. Vogt (2003) Phytoremediation for Hydraulic Control and Remediation: Beale 2) Air Force Base and Koppel Stockton Terminal. Abstracts from US EPA International Applied Phytotechnologies Workshop March 3-5, 2003 Chicago, ILHydraulic control. USDA hardiness zones 2 through 9.NNN
Native WillowNative WillowBenzene, Lead, Mercury, Nickel, Polychlorinated Biphenyl (PCB), Silver, TolueneN/ARhizodegradation, Phytovolitization1) L. A. Newman et al. Remediation of trichloroethylene in an artificial aquifer with trees: A controlled field study Environ. Sci. Technol. 33:2257-2285 (1999) Hydraulic controlNNN
Nepeta catariaCatnipChromium, Nickel, Iron, Manganese, Cobalt, Copper, ZincAccumulatorNawab J, Khan S, Shah MT, Khan K, Huang Q, Ali R. Quantification of Heavy Metals in Mining Affected Soil and Their Bioaccumulation in Native Plant Species. Int J Phytoremediation. 2015;17(9):801-813. doi:10.1080/15226514.2014.981246
Nephrolepis exaltataBoston FernBostonFernBostonFern.jpgBenzene, Formaldehyde, Toluene, Trichloroethylene (TCE)  and by-products, XyleneHyperaccumulatorPhytoextraction1) B.C Wolverton and John D. Wolverton. Wolverton Environmental Services. http://www.wolvertonenvironmental.com/MsAcad-93.pdf 2) http://www.flickr.com/photos/cayobo/5995800/(Photo Source)Plant Characteristics: Humidity Needed, Partial Sun, Moderate Water. Hardiness zone 8b-11.NNN
Nephrolepis obliterataKimberly QueenAlcohol, Benzene, Formaldehyde, Toluene, XyleneAccumulator, HyperaccumulatorN/A1) Plants "Clean" Air Inside Our Homes (kilde NASA) 2) Wolverton, B.C. (1996) How to Grow Fresh Air. New York: Penguin Books. 3) B. C. Wolverton and J.D. Wolverton. "Plants and Soil Microorganisms: Removal of Formaldehyde, Xylene, Ammonia From the Indoor Environment". Retrieved 2011-08-27.This plant can grow in low light, requires lots of moisture and proper drainage. Hardiness zones 9a to 11NNN
Nerium oleanderOleanderPetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Shrub. Officially hardy to Zone 6bNNN
Noccaea caerulescensThlaspi alpestreCadmium, ZincAccumulator, HyperaccumulatorPhytoextraction1) Broadhurst CL, Chaney RL, Davis AP, et al. Growth and Cadmium Phytoextraction by Swiss Chard, Maize, Rice, Noccaea caerulescens, and Alyssum murale in Ph Adjusted Biosolids Amended Soils. Int J Phytoremediation. 2015;17(1-6):25-39. doi:10.1080/15226514.2013.828017 2) Simmons RW, Chaney RL, Angle JS, et al. Towards practical cadmium phytoextraction with Noccaea caerulescens. Int J Phytoremediation. 2015;17(1-6):191-199. doi:10.1080/15226514.2013.876961 3) Tlustoš P, B?endová K, Száková J, Najmanová J, Koubová K. The long-term variation of Cd and Zn hyperaccumulation by Noccaea spp and Arabidopsis halleri plants in both pot and field conditions. Int J Phytoremediation. 2016;18(2):110-115. doi:10.1080/15226514.2014.981243 4) (Phyto Textbook) Broadhurst, C.l., Chaney, R. L., Davis, A. P., Cox, A., Kumar, K., Reeves, R. D., and Green, C. E. 2013 Growth and cadmium phytoextraction by Swiss chard, maize, rice, Noccaea caerulescens and Alyssum murale in pH adjusted biosolids amended soil
Noccaea praecoxEarly Penny CressCadmium, Lead, ZincHyperaccumulatorPhytoextractionTlustoš P, B?endová K, Száková J, Najmanová J, Koubová K. The long-term variation of Cd and Zn hyperaccumulation by Noccaea spp and Arabidopsis halleri plants in both pot and field conditions. Int J Phytoremediation. 2016;18(2):110-115. doi:10.1080/15226514.2014.981243
Nymphaea odorataWater LilyWaterLilyWaterLily.jpgChromium, Copper, ManganeseAccumulator of Copper and Manganese. Rhizofiltration1) http://ourgardengang.tripod.com/whsuckitup.htm 2)http://www.flickr.com/photos/10233859@N00/4697365322/(Photo Source)hardiness Zones: 3-11NNN
Oenothera glaziovianaEvening PrimroseCopperTolerantPhytostabilization(Phyto Textbook) Guo, P., Wang, T., Liu, Y., Xia, Y., Wang, E., Shen, Z., and Chen, Y., 2013. Phytostabilization potential of evening primrose (Oenothera glazioviana) for copper-contaminated sites. Environmental Science and Pollution Research 21 (1), pp. 1-10.O. glazioviana, a copper excluder
Olea EuropaeaOliveCopper, Zinc, LeadAccumulatorPhytostabilization - excluder plantNirola R, Megharaj M, Aryal R, Naidu R. Screening of metal uptake by plant colonizers growing on abandoned copper mine in Kapunda, South Australia. Int J Phytoremediation. 2016;18(4):399-405. doi:10.1080/15226514.2015.1109599
Opuntia ficusPirckly PearLead, Total petroleum hydrocarbonsAccumulatorPhytoextractionEscobar-Alvarado LF, Vaca-Mier M, López-Callejas R, Rojas-Valencia MN. Efficiency of Opuntia ficus in the phytoremediation of a soil contaminated with used motor oil and lead, compared to that of Lolium perenne and Aloe barbadensis. Int J Phytoremediation. 2018;20(2):184-189. doi:10.1080/15226514.2017.1365332
Oryza sativa LRiceCadmium, heavy metalsHyperaccumulatorPhytoextraction1) (Phyto Textbook) Mandal, A., Purakayastha, T., Patra, A., and Sanyal, S. 2012. Phytoremediation of arsenic contaminated soil by Pteris vittata L. II. Effect on arsenic uptake and rice yield. International Journal of Phytoremediation 14 (6) pp. 621-628. 2) Zhou L, Wu L, Li Z, et al. Influence of Rapeseed Cake on Heavy Metal Uptake by a Subsequent Rice Crop After Phytoextraction Using Sedum plumbizincicola. Int J Phytoremediation. 2015;17(1-6):76-84. doi:10.1080/15226514.2013.837026
Osmanthus fragransSweet OsmanthusCadmiumAccumulator/TolerantPhytostabilization1) Kang W, Bao J, Zheng J, Xu F, Wang L. Phytoremediation of heavy metal contaminated soil potential by woody plants on Tonglushan ancient copper spoil heap in China. Int J Phytoremediation. 2018;20(1):1-7. doi:10.1080/15226514.2014.950412 2) Zeng P, Guo Z, Cao X, Xiao X, Liu Y, Shi L. Phytostabilization potential of ornamental plants grown in soil contaminated with cadmium. Int J Phytoremediation. 2018;20(4):311-320. doi:10.1080/15226514.2017.1381939
Panicum repensTorpedo grassCadmium, LeadTolerantPhytoaccumulationGao G, Zeng X, Li Z, Chen A, Yang Z. Variations in several morphological characteristics and Cd/Pb accumulation capacities among different ecotypes of torpedograss responding to Cd-Pb stresses. Int J Phytoremediation. 2017;19(9):844-861. doi:10.1080/15226514.2017.1284759
Panicum virgatum SwitchgrassSwitchgrassSwitchgrass.jpgLead, CadmiumHyperaccumulatorDegradation, Rhizodegradation, Phytoextraction1) April 2003, Jeremiah Knuth, Department of Civil Engineering, Colorado State University.http://rydberg.biology.colostate.edu/Phytoremediation/2003/Knuth/home.htm 2) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 3) http://www.flickr.com/photos/ag-energy-extension/4276187663/(Photo Source) 4) USDA NRCS Plant Materials Center, Manhattan, Kansas & Kansas State University, Forestry Researchhttp://plants.usda.gov/factsheet/pdf/fs_sani.pdf (Source for Nickel, PAH, and Silver) 5) (Phyto Textbook) Albright III, V., and Coats, J. 2014. Disposition of atrazine metabolites following uptake and degradation of atrazine in Switchgrass. International Journal of Phytoremediation 16 (1), pp. 62-72, DOI, 10.1080/15226514.2012.759528. 6) Mcintosh, Patrick, et al. “Breakdown of Low-Level Total Petroleum Hydrocarbons (TPH)Full sun, hardy to Zone 5. Grows 60 inches tall.NNN
Panicum virgatumBlue SwitchgrassPanicum virgatumBlueSwitchgrass.jpgAtrazineAccumulatorN/A1) http://www.big-grass.com/Panicum%20virgatum.html 2) http://www.flickr.com/photos/plant_diversity/3912256825/ (Photo Source)Hardy, deep rooted grass. Can grow up to 9 ft. Hardness zone 4-9.NNN
Parkinsonia aculeataJerusalem thornSalinityAccumulatorPhytoextractionDevi S, Nandwal AS, Angrish R, Arya SS, Kumar N, Sharma SK. Phytoremediation potential of some halophytic species for soil salinity. Int J Phytoremediation. 2016;18(7):693-696. doi:10.1080/15226514.2015.1131229
Pascopyrum smithiiWestern WheatgrassWesternWheatgrassWesternWheatgrass.jpgAtrazine, Hydrocarbons, Lead, Polycyclic Aromatic Hydrocarbon (PAH), ZincN/ARhizodegradation1) USDA NRCS Plant Materials Center, Manhattan, Kansas & Kansas State University, Forestry Researchhttp://plants.usda.gov/factsheet/pdf/fs_sani.pdf - Nickel, pah, silver 2) April 2003, Jeremiah Knuth, Department of Civil Engineering, Colorado State University.http://rydberg.biology.colostate.edu/Phytoremediation/2003/Knuth/home.htm 3) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 4) http://www.flickr.com/photos/tonyfrates/5895328848/ (Photo Source) Growth Rate: Rapid, mature height of 2’. Duration, Growth Habit: Perennial, Graminoid. Drought Tolerance: High. Moisture Use: Medium. Salinity Tolerance: High. Shade Tolerance: Intolerant. Habitat: Capable of growing in a wide variety of soils. PerNNN
Paspalum scrobiculatumKodo milletPetroleum hydrocarbons Accumulator/TolerantPhytodegredationAnyasi RO, Atagana HI. Profiling of plants at petroleum contaminated site for phytoremediation. Int J Phytoremediation. 2018;20(4):352-361. doi:10.1080/15226514.2017.1393386
Paspalum vaginatumSeashrore paspalumPetroleum hydrocarbons Accumulator/TolerantPhytodegredationAnyasi RO, Atagana HI. Profiling of plants at petroleum contaminated site for phytoremediation. Int J Phytoremediation. 2018;20(4):352-361. doi:10.1080/15226514.2017.1393386
Paulownia tomentosaEmpress TreeHeavy Metals and HydrocarbonsAccumulator(Phyto Textbook) Macci, C., Doni, S., Peruzzi, E., Bardella, S., Filippis, G., Ceccanti, B., and Masciandaro, G. 2012. A real-scale soil phytoremediation. Biodegredation 24 (4) pp. 521-539
Pelargonium graveolensRose scented geraniumCadmium, Nickel, Chromium, LeadHyperaccumulatorAccumulatorChand S, Singh G, Patra DD. Performance of rose scented geranium (Pelargonium graveolens) in heavy metal polluted soil vis-à-vis phytoaccumulation of metals. Int J Phytoremediation. 2016;18(8):754-760. doi:10.1080/15226514.2015.1131236
Pelargonium roseumScented geraniumsNickel, Cadmium, LeadHyperaccumulatorPhytoaccumulation(Phyto Textbook) Mahdieh, M., Yazdani, M., and Mahdieh, S. 2013. The high potential of Pelargonium roseum plant for phytoremediation of heavy metals. Envionmental Monitoring and Assessment, pp. 1-5.
Peltophorum pterocarpumCopperpodLead AccumulatorPhytostabilization(Phyto Textbook) Meeinkuirt, W., Pokethitiyook, P., Kruatrachue, M., Tanhan, P., and Chairyarat, R. 2012. Phytostabilization of a Pb-contaminated mine tailing by various tree species in pot and field trial experiments. International Journal of Phytoremediation 14 (9), pp. 925-938.
Pennisetum purpureum Schum.Elephantgrassexcess soil Ph(Phyto Textbook) Silveira, M. L., Vendramini, J. M. B., Sui, X., Sollenberger, L., and O'Connor, G. A. 2013. Screening perennial warm-season bioenergy crops as an alternative for phytoremediation of excess soil P. Bioenergy Reserach 6 (2) pp. 469-475.
Petroselinum crispumParsleyMercuryAccumulatorPhytoextractionBibi A, Farooq U, Naz S, et al. Phytoextraction of HG by parsley (Petroselinum crispum) and its growth responses. Int J Phytoremediation. 2016;18(4):354-357. doi:10.1080/15226514.2015.1109590
Phalaris arundinacea Reed Canary GrassReedCanaryGrassReedCanaryGrass.jpgCadmiumN/AN/A1) Phytoremediation of Radio¬nuclides. Dushenkov et al. 1998, Negri and Hinchman 2000, Huang et al. 1998, et al. 1997, Negri and Hinchman 2000, Dushenkov et al. 1998. http://rydberg.biology.colostate.edu/Phytoremediation/2000/Lawra/BZ580.htm (Cesium, Nickel, PAH, and PCB source) 2) http://en.wikipedia.org/wiki/List_of_hyperaccumulators Glomus mosseae as chelating agent (amendment). It increases the surface area of the plan roots, allowing roots to acquire more nutrients, water and therefore more available radionuclides in soil solution. USDA hardiness zones 4 through 9.NNN
Phanerochaete chrysosporium White Rot FungiWhiteRotFungiWhiteRotFungi.jpgTrichloroethylene (TCE)  and by-productsN/ARhizodegradation1) Koehler, H., J. Warrelmann, T. Frische, P. Behrend, and U. Walter. (2002) In-Situ Phytoremediation of TNT- Contaminated Soil. Acta Biotechnologia 22:1-2, 67-80. 2) http://www.flickr.com/photos/afternoon_sunlight/153130808/ (Photo Source)NNN
Phapis excelsaLady PalmCarbon Monoxide, FormaldehydeAccumulatorN/A1) B.C Wolverton and John D. Wolverton. Wolverton Environmental Services. http://www.wolvertonenvironmental.com/MsAcad-93.pdfUSDA hardiness zones: 8B through 11.NNN
Philodendron scandens Heart-Leaf PhilodendronFormaldehydeN/APhytoextraction1) April 2003, Jeremiah Knuth, Department of Civil Engineering, Colorado State University.http://rydberg.biology.colostate.edu/Phytoremediation/2003/Knuth/home.htmLight: semi-shade, climber, easy maintenance. USDA hardiness zones: 10B through 11NNN
Phoenix roebeleniiDwarf Date PalmDwarfDatePalmDwarfDatePalm.jpgBenzene, Cadmium, Carbon Monoxide, Chromium, Formaldehyde, Lead, XyleneHyperaccumulatorN/A1) B. C. Wolverton and J.D. Wolverton. "Plants and Soil Microorganisms: Removal of Formaldehyde, Xylene, Ammonia From the Indoor Environment". Retrieved 2011-08-27. 2) http://www.flickr.com/photos/adaduitokla/6079941138/(Photo Source)Hardiness zone 9-10.NNN
Phormium tenaxNew Zealand FlaxPetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Shrub. Variety: Wings of Gold. USDA Zones: 9-11NNN
Photinia fraseriRed Tip PhotiniaPetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Shrub. Hardiness zones 7 through 9.NNN
Phragmites australisCommon Reed GrassPhragmites autralisCommonReedGrass.jpgAcid mine drainageAccumulatorRhizodegradation, Phytoextraction, Phytostabilization, Rhizoremediation1) Reed, S.C. (1995). Natural systems for waste management and treatment. McGraw Hill, Inc. 2) http://www.flickr.com/photos/plant_diversity/3850698413/ (Photo Source) 3) Hechmi N, Ben Aissa N, Abdenaceur H, Jedidi N. Uptake and Bioaccumulation of Pentachlorophenol by Emergent Wetland Plant Phragmites australis (Common Reed) in Cadmium Co-contaminated Soil. Int J Phytoremediation. 2015;17(1-6):109-116. doi:10.1080/15226514.2013.851169 4) Guo L, Cutright TJ. Remediation of AMD Contaminated Soil by Two Types of Reeds. Int J Phytoremediation. 2015;17(1-6):391-403. doi:10.1080/15226514.2014.910170 5) (Phyto Textbook) Ribeiro, H., Almeida, C., Mucha, A., ad Bordalo, A. 2013. Influence of different salt marsh plants on hydrocarbon degrading microorganisms abundance throughout a phenological cycle. International Journal of Phytoremediation 15 (3), pp. 245-256.Emergent height: 3-6 ft. Water use: Medium light requirement: Sun. Hardiness zone 4-8.NNN
Phragmites karkaPerennial grassArsenicAccumulatorPhyotextraction, Evapotranspiration?1) Badejo AA, Sridhar MK, Coker AO, Ndambuki JM, Kupolati WK. Phytoremediation of Water Using Phragmites karka and Veteveria nigritana in Constructed Wetland. Int J Phytoremediation. 2015;17(9):847-852. doi:10.1080/15226514.2014.964849 2) Raj A, Jamil S, Srivastava PK, Tripathi RD, Sharma YK, Singh N. Feasibility Study of Phragmites karka and Christella dentata Grown in West Bengal as Arsenic Accumulator. Int J Phytoremediation. 2015;17(9):869-878. doi:10.1080/15226514.2014.964845
Phytolacca acinosa Roxb. w/ Arthrobacter echigonensis MN 1405Indian pokeweedManganeseHyperaccumulatorPhytoextractionLi, Fengyu, et al. “Phytolacca AcinosaRoxb. WithArthrobacter echigonensisMN1405 Enhances Heavy Metal Phytoremediation.” International Journal of Phytoremediation, vol. 18, no. 10, 2016, pp. 956–965., doi:10.1080/15226514.2016.1183573.
Phytolacca americanaPokeweedRare Earth ElementAccumulatorYuan M, Liu C, Liu WS, et al. Accumulation and fractionation of rare earth elements (REEs) in the naturally grown Phytolacca americana L. in southern China. Int J Phytoremediation. 2018;20(5):415-423. doi:10.1080/15226514.2017.1365336
Picea marianaBlack SpruceBlackSpruceBlackSpruce.jpgUraniumN/AN/A1) Fryer, Janet L. 2011. Microstegium vimineum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [2011, December 7]. 2) Phytoremediation of Radio¬nuclides. Dushenkov et al. 1998, Negri and Hinchman 2000, Huang et al. 1998, et al. 1997, Negri and Hinchman 2000, Dushenkov et al. 1998. http://rydberg.biology.colostate.edu/Phytoremediation/2000/Lawra/BZ580.htm 3) http://www.flickr.com/photos/esagor/2451936686/(Photo Source) Hardiness zone 2-6.NNN
Picea pungensDwarf Globe Blue SprucePetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Shrub. Hardiness zone 2-8.NNN
Pinus mugoMugo PineParticulate matterAccumulatorPhytoaccumulation(Phyto Textbook) Saebo, A., Popek, R., Nawrot, B., Hanslin, H., Gawronska, H. and Gawronski, S. 2013. Plant species differences in particulate matter accumulation on leaf surfaces. Science of the Total Envrionment 427, pp. 347-354.
Pinus mugo pumiloDwarf Mugo PinePetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Shrub. Hardiness zone 3-8.NNN
Pinus nigraAustrian PineAustrianPineAustrianPine.jpgPolychlorinated Biphenyl (PCB)N/ARhizodegradation1) Leigh, M.B., J. Fletcher, D.P. Nagle, P. Prouzova, M. Mackova and T. Macek (2003) Rhizoremediation of PCBS: Mechanistic and Field Investigations 2)http://www.flickr.com/photos/verzo/5633978439/(Photo Source)Also known as European Black Pine. Grows best in hardiness zones 4-7. Austrian pine and Black locust significantly increased the number of PCB-degrading bacteria in their rhizospheres. NNN
Pinus ponderosaPonderosa PineIMG_7933PonderosaPine.jpgPlutonium, StrontiumAccumulatorN/A1) http://www.ubcbotanicalgarden.org/potd/2005/06/pinus_ponderosa.php 2) http://www.flickr.com/photos/prayingmother/4009646343/(Photo Source)Hardiness Zones: Zones 3 - 7NNN
Pinus radiataMonterey PineMontereyPineMontereyPine.jpgCesium, Strontium, Tritium, UraniumAccumulatorN/A1) Phytoremediation of Radio¬nuclides. Dushenkov et al. 1998, Negri and Hinchman 2000, Huang et al. 1998, et al. 1997, Negri and Hinchman 2000, Dushenkov et al. 1998. http://rydberg.biology.colostate.edu/Phytoremediation/2000/Lawra/BZ580.htm 2) http://www.flickr.com/photos/magnuscanis/77506045/ (Photo Source)Tree able to accumulate radionuclides. USDA Hardiness Zone: 7 to 9NNN
Pinus strobusEastern White PineEasternWhitePineEasternWhitePine.jpgHydrocarbons, Organic Solvents, Perchloroethylene (PCE), Trichloroethylene (TCE)  and by-products, Vinyl Chloride, Hydrocarbons, Organic SolventsN/AN/A1) http://tinyurl.com/7dvtfpk (Photo Source) 2) Ferro, A., Chard, B., Gefell, M., Thompson, B., and R. Kjelgren. 200 "Phytoremediation of Organic Solvents in Groundwater: Pilot Study at a Superfund Site". In: G. Wickramanayake, A. Gavaskar, B. Alleman, and V. Magar (eds.) Bioremediation and Phytoremediation of Chlorinated and Recalcitrant Compounds, p461-466. Battelle Press, Columbus, Ohio.; Ferro, A., Kennedy, J., Kjelgren, R., Rieder, J., and S. Perrin. 1999. "Toxicity Assessment of Volatile Organic Compounds in Poplar Trees". International Journal of Phytoremediation. 1(1): 9-17. 3) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/pla_20species_phyto.pdfHardiness Zones: Zones 3 - 8.NNN
Pinus strobusWhite PineWhitePineWhitePine.jpgHydrocarbons, Organic Solvents, Perchloroethylene (PCE), Trichloroethylene (TCE)  and by-products, Vinyl Chloride, Hydrocarbons, Organic SolventsN/AN/A1) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant_species_phyto.pdf 2)http://www.flickr.com/photos/jstephenconn/3050128941/ (Photo Source)Hardiness Zones: Zones 3 - 8.NNN
Pinus sylvestrisScots PineParticulate matterAccumulatorPhytoaccumulation(Phyto Textbook) Saebo, A., Popek, R., Nawrot, B., Hanslin, H., Gawronska, H. and Gawronski, S. 2013. Plant species differences in particulate matter accumulation on leaf surfaces. Science of the Total Envrionment 427, pp. 347-354.
Pinus taedaLoblolly Pine LoblollyPineLoblollyPine.jpgChlorobenzene, benzeneTolerantPhytodegradation, Rhizodegradation, Phytovolatization1) Walton, B.T and Anderson, T.A. 1990. "Microbial Degradation of Trichloroethylene in the Rhizosphere: Potential Application to Biological Remediation of Waste Sites". Applied and Environmental Microbiology, Apr 1990, p. 1012-1016. Kim, RH et. Al. (2003) 2) Remediation of VOC-Contaminated Groundwater at the Savannah River Site by Phyto-Irrigation. Abstracts from US EPA International Applied Phytotechnologies Workshop March 3-5, 2003 Chicago, IL 3)http://www.flickr.com/photos/79666107@N00/5746324057/(Photo Source) 4) Barcellos D, Morris LA, Nzengung V, Moura T, Mantripragada N, Thompson A. Eucalyptus urograndis and Pinus taeda enhance removal of chlorobenzene and benzene in sand culture: A greenhouse study. Int J Phytoremediation. 2016;18(10):977-984. doi:10.1080/15226514.2016.1183565Hydraulic control. USDA hardiness zones: 6B through 9B.NNN
Pistacia chinensisChinese PistachioPetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Tree. Hardiness zone 6b-9NNN
Pistia stratiotesWater LettuceWaterLettuceWaterLettuce.jpgIron, Manganese, Chromium, Lead, CopperAccumulatorPhytoextraction, Rhizofiltration1) http://www.ncbi.nlm.nih.gov/pubmed/19104863 2) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 3) Victor KK, Séka Y, Norbert KK, Sanogo TA, Celestin AB. Phytoremediation of wastewater toxicity using water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes). Int J Phytoremediation. 2016;18(10):949-955. doi:10.1080/15226514.2016.1183567 4) Galal TM, Eid EM, Dakhil MA, Hassan LM. Bioaccumulation and rhizofiltration potential of Pistia stratiotes L. for mitigating water pollution in the Egyptian wetlands. Int J Phytoremediation. 2018;20(5):440-447. doi:10.1080/15226514.2017.1365343Hardy to zone 10.NNN
Pisum sativumGarden PeaGardenPeaGardenPea.jpgBromine, Polycyclic aromatic hydrocarbons AccumulatorPhytoextraction1) Phytoremediation of Lead Contaminated Rifle Range Soils, CFB Chilliwack, BC. RMC-CCE-ES-00-13. Environment Canada, 2000. 2) http://www.flickr.com/photos/katja-london/1119805344/(Photo Source) 3) Zhu S, Ma X, Guo R, et al. A field study on heavy metals phytoattenuation potential of monocropping and intercropping of maize and/or legumes in weakly alkaline soils. Int J Phytoremediation. 2016;18(10):1014-1021. doi:10.1080/15226514.2016.1183570 4) Shtangeeva I, Perämäki P, Niemelä M, Kurashov E, Krylova Y. Potential of wheat (Triticum aestivum L.) and pea (Pisum sativum) for remediation of soils contaminated with bromides and PAHs. Int J Phytoremediation. 2018;20(6):560-566. doi:10.1080/15226514.2017.1405375Hardiness Zone: USDA Zones 7-9NNN
Pittosporum tobiraPittosporumPetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Shrub. Variety: Variegata. USDA hardiness zones: 8B through 11NNN
Pityrogramma calomelanosDixie Silverback FernDixieSilverbackFernDixieSilverbackFern.jpgChromium, Copper, Lead, MercuryN/AN/A1) Fryer, Janet L. 2011. Microstegium vimineum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [2011, December 7]. 2) http://www.flickr.com/photos/adaduitokla/6364600451/(Photo Source)Also known as Silverback FernNNN
Planchonella oxyhedraNickelHyperaccumulatorHamdan AM, Bijaksana S, Tjoa A, Dahrin D, Kirana KH. Magnetic characterizations of nickel hyperaccumulating plants (Planchonella oxyhedra and Rinorea bengalensis) from Halmahera, Indonesia. Int J Phytoremediation. 2019;21(4):364-371. doi:10.1080/15226514.2018.1524839
Platanus x acerfoliaNorway MapleLeadAccumulator/TolerantKang W, Bao J, Zheng J, Xu F, Wang L. Phytoremediation of heavy metal contaminated soil potential by woody plants on Tonglushan ancient copper spoil heap in China. Int J Phytoremediation. 2018;20(1):1-7. doi:10.1080/15226514.2014.950412
Platycladus orientalisOriental ArborvitaeCadmiumTolerantPhytostabilizationZeng P, Guo Z, Xiao X, Cao X, Peng C. Response to cadmium and phytostabilization potential of Platycladus orientalis in contaminated soil. Int J Phytoremediation. 2018;20(13):1337-1345. doi:10.1080/15226514.2018.1501338
Podranea riscasolianaPink Trumpet VinePetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Vine. Variety: Sprague. Hardiness zones 9 through 11NNN
Polygonum hydropiperWater PepperPAccumulatorPhytoextractionYe D, Li T, Zheng Z, Zhang X, Yu H. P uptake characteristics and root morphological responses in the mining ecotype of Polygonum hydropiper under high organic P media. Int J Phytoremediation. 2018;20(6):608-615. doi:10.1080/15226514.2017.1413327
Polygonum lapathifolium Smartweed SmartweedSmartweed.jpgChromium, Copper, LeadHyperaccumulatorN/A1) April 2003, Jeremiah Knuth, Department of Civil Engineering, Colorado State University.http://rydberg.biology.colostate.edu/Phytoremediation/2003/Knuth/home.htm 2) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 3) http://www.flickr.com/photos/zen/27021065/ (Photo Source) 4) http://www.missouriplants.com/Whitealt/Polygonum_hydrop¬iperoides_page.html 5) USDA NRCS Plant Materials Center, Manhattan, Kansas & Kansas State University, Forestry Researchhttp://plants.usda.gov/factsheet/pdf/fs_sani.pdf 6) Liu K, Yu F, Chen M, et al. A newly found manganese hyperaccumulator--Polygonum lapathifolium Linn. Int J Phytoremediation. 2016;18(4):348-353. doi:10.1080/15226514.2015.1109589 Growth Rate: Slow. Duration, Growth Habit: Perennial, Forb/Herb. Drought Tolerance: Low. Moisture Use: Medium. Salinity Tolerance: Low. Shade Tolerance: Intolerant. Habitat: Grows well near or in water. USDA Hardiness Zone 4-10NNN
Poplulus trichocarpa x P. deltoidesHybrid PoplarGasoline, Diesel, Jet Fuel, (petroleum hydrocarbon); benzene, toluene, ethylbenzene, and xylenes AccumulatorPhytodegradation, Phytoextraction, Phytostabilization, Rhizodegradation1) Interstate Technologoy and Regulation Cooperation Work Group. Phytoremediation Decision Tree, ITRC. http://www.itrcweb.org/documents/phyto-1.pdf 2) McLinn, E., Vondracek, J., and E. Aitchison. 2001. “Monitoring Remediation with Trembling Leaves: Assessing the Effectiveness of a Full-Scale Phytoremediation System”. In: A. Leeson, E. Foote, M. Banks, and V. Magar (eds.) Phytoremediation, Wetlands, and Sediments, p121-127. Battelle Press, Columbus, Ohio. 3) Negri, M.C., et al 2003 Root Development and Rooting at Depths, in S.C. McCutcheon and J.L. Schnoor, eds., Phytoremediation: Transformation and Control of Contaminants: Hoboken, NJ, John Wiley & Sons, Inc. p233-262, 912-913 Quinn, J.J., et al 200 Predicting the Effect of Deep-Rooted Hybrid Poplars on the Groundwater Flow System at a Phytoremediation Site: International Journal of Phytoremediation, vol. 3, no. 1, p. 41-60 4) (Phyto Textbook) Guthrie Nichols, E., Cook, R. L., Landmeyer, J.E., Atkinson, B., Malone, D. R., Shaw,Upland Height: 40-60 ft. Width: 20-35 ft. Root type: Shallow and wide-spreading. Water use: High light requirement: Full sun. Soil moisture: Moist leaf color: Green to dark green; yellow fall color . Cover and snow protection. Buds provide a source of foNNN
Populus albaWhite PoplarArsenic, Lead, Copper, Manganese, ZincAccumulatorPhytostabilization, Phytoaccumulation(Phyto Textbook) Madejon, P., Ciadamidaro, L., Maranon, T., and Murillo, J.M. 2012. Long-term biomonitoring of soil contamination using poplar trees: accumulation of trace elements in leaves and fruits. International Journal of Phytoremediation 15, pp. 602-614.
Populus deltoides Eastern CottonwoodEasternCottonwoodEasternCottonwood.jpgArsenicTolerant, HyperaccumulatorPhytostabilization, Phytoextraction1) U.S Environmental Protection Agency (EPA). Phytoremediation field studies database for chlorinated solvents, pesticides, explosives, and metals. http://www.afcee.af.mil/shared/media/document/AFD-071130-018.pdf 2) http://www.flickr.com/photos/plant_diversity/5027342086/ (Photo Source) 3) Hussain S, Akram M, Abbas G, et al. Arsenic tolerance and phytoremediation potential of Conocarpus erectus L. and Populus deltoides L. Int J Phytoremediation. 2017;19(11):985-991. doi:10.1080/15226514.2017.1303815 4) (Phyto Textbook) Ciurli, A., Lenzi, L., Alpi, A., and Pardossi, A. 2014. Arsenic uptake and translocation by plants in pot and field experiments. International Journal of Phytoremediation 16 (7-8), Special Issue: The 9th Interational Phytotechnology Society Conference -- Hasselt, Belgium 2012, pp. 804-823, DOI, 10.1080/15226514.2013.856850.Salt tolerant: High roots: Shallow fibrous roots. Qualities: Moist to wet, saturated conditions, but can tolerate drier conditions. Grows best when water is 2’ below surface. Full sun. Can uptake over 200 gallons of water a day. Hardiness zone 3-9.NNN
Populus deltoides ssp. MoniliferaPlains CottonwoodPlainsCottonwoodPlainsCottonwood.jpgBenzene, Polycyclic Aromatic Hydrocarbon (PAH)N/AN/A1) United States, E. P. (2005). Road Map to Understanding Innovative Technology Options for Brownfield’s Investigation and Cleanup. (Fourth ed.). Washington, DC: U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Re¬sponse, Office of Superfund Remediation and Technology Innovation.USDA Hardiness Zone: 2 – 9NNN
Populus euphratica (with Phyllobacterium sp.)Euphrates poplarZinc, Copper, Nickel, LeadAccumulatorZhu D, Ouyang L, Xu Z, Zhang L. Rhizobacteria of Populus euphratica Promoting Plant Growth Against Heavy Metals. Int J Phytoremediation. 2015;17(10):973-980. doi:10.1080/15226514.2014.981242
Populus maximowicziiJapanese PoplarJapanesePoplarJapanesePoplar.jpgBenzene, Ethyl, Perchloroethylene (PCE), Toluene, Trichloroethylene (TCE)  and by-products, Vinyl Chloride, XyleneN/AN/A1) McLinn, E., Vondracek, J., and E. Aitchison. 2001. "Monitoring Remediation with Trembling Leaves: Assessing the Effectiveness of a Full-Scale Phytoremediation System". In: A. Leeson, E. Foote, M. Banks, and V. Magar (eds.) Phytoremediation, Wetlands, and Sediments, p121-127. Battelle Press, Columbus, Ohio. 2) http://www.flickr.com/photos/katja-london/897774545/ (Photo Source)Hardiness zone 5. Shade tree or Wind breaks. USDA Hardiness Zone: 3 to 7NNN
Populus monvisoPoplarCadmium, Copper, Nickel, ZincAccumulatorPhytostabilization, Phytoaccumulation, Phytodegradation, Phytoextraction, Phytoscreening1) (Phyto Textbook) Evangelou, M.W., Robinson, B.H., Gunthardt-Goerg, M.S., and Schlin, R. 2013. Metal uptake and allocation in trees grown on contaminated land: implications for biomass production. International Journal of Phytoremediation 15 (1), pp. 77-90. 2) (Phyto Textbook) Ferro, A.M., Adham, T., Berra, B., and Tsao, D. 2013. Performance of deep-rooted phreatophytic trees at a site containing total petroleum hydrocarbons. International Journal of Phytoremediation 15 (3), pp. 232-244. 3) (Phyto Textbook) Lee, K. Y., and Doty, S. L. 2012. Phytoremediation of chlorpyrifos by Populus and Salix. International Journal of Phytoremediation 14 (1), pp. 48-61. 4) (Phyto Textbook) Algreen, M., Trapp, S., and Rein, A. 2013. Phytoscreening and phytoextraction of heavy metals at Danish polluted sites using willow and poplar trees. Environmental Science and Pollution Research, epub. ahead of print, DOI, 10.1007/s11356-013-2085-z. Birch could be suitable for phytostabilization of soils with high Cadmium and Zn but low Pb concentrations, while poplars and willows could be used to stabilise soils with high Cu and Pb and low Zn and Cadmium concentrations.
Populus nigra (var.italica)Black PolarHeavy Metals and HydrocarbonsAccumulator(Phyto Textbook) Macci, C., Doni, S., Peruzzi, E., Bardella, S., Filippis, G., Ceccanti, B., and Masciandaro, G. 2012. A real-scale soil phytoremediation. Biodegredation 24 (4) pp. 521-538
Populus nigra L.Black poplarHistidine, NickelAccumulator, HyperaccumulatorPhytoextraction1) Ozen SA, Yaman M. Examination of correlation between histidine and nickel absorption by Morus L., Robinia pseudoacacia L. and Populus nigra L. using HPLC-MS and ICP-MS. Int J Phytoremediation. 2016;18(8):794-800. doi:10.1080/15226514.2015.1131243 2) Kacálková L, Tlustoš P, Száková J. Phytoextraction of risk elements by willow and poplar trees. Int J Phytoremediation. 2015;17(1-6):414-421. doi:10.1080/15226514.2014.910171
Populus tremuloidesQuaking AspenQuakingAspenQuakingAspen.jpgBifenthrinAccumulatorPhytodegradation, Rhizodegradation, Phytoextration1) USDA NRCS Plant Materials Center, Manhattan, Kansas & Kansas State University, Forestry Researchhttp://plants.usda.gov/factsheet/pdf/fs_sani.pdf 2) April 2003, Jeremiah Knuth, Department of Civil Engineering, Colorado State University.http://rydberg.biology.colostate.edu/Phytoremediation/2003/Knuth/home.htm 3) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 4) http://www.flickr.com/photos/anauxite/57727163/(Photo Source) 5) Interstate Technologoy and Regulation Cooperation Work Group. Phytoremediation Decision Tree, ITRC. http://www.itrcweb.org/documents/phyto-1.pdf Intense root sytems: lateral roots may extend 30 m or more and vertical sinker roots may extend downward 3 m or more. Growth Rate: Rapid. Medium sized tree ranging from5-30 m high, typically less than 15 m. Habitat: Prefers anywhere with ample soil moistuNNN
Populus x Canadensis "NortheasternNortheastern PoplarTrichloroethylene (TCE)  and by-productsN/AN/A1) Work Plan for the Phytostabilization of Chlorinated Solvents from Groundwater at Site 2, Altus Air Base, Oklahoma, NTIS: ADA381406, 1999Hydraulic control. Hardiness zone 4-8NNN
Populus X canadensis moench"Imperial Carolina" Poplar (DN-34)Benzene, Bifenthrin, TOXIN Perchloroethylene (PCE), Picloram, Toluene, Trichloroethylene (TCE)  and by-products, Vinyl Chloride, XyleneAccumulatorPhytodegradation, Rhizodegradation1) McLinn, E., Vondracek, J., and E. Aitchison. 2001. "Monitoring Remediation with Trembling Leaves: Assessing the Effectiveness of a Full-Scale Phytoremediation System". In: A. Leeson, E. Foote, M. Banks, and V. Magar (eds.) Phytoremediation, Wetlands, and Sediments, p121-127. Battelle Press, Columbus, OhioUpland Height: 50-80 ft. Soil Moisture: Varies, Prefers Moist, Flower Color: yellow. Rapid growth rat does eat produce cottony substance. hardiniss Zone: 3 - 9.NNN
Populus x canadensis "Orion"Canadian Poplar, Carolina PoplarArsenicHyperaccumulatorPhytoextraction(Phyto Textbook) Ciurli, A., Lenzi, L., Alpi, A., and Pardossi, A. 2014. Arsenic uptake and translocation by plants in pot and field experiments. International Journal of Phytoremediation 16 (7-8), Special Issue: The 9th Interational Phytotechnology Society Conference -- Hasselt, Belgium 2012, pp. 804-823, DOI, 10.1080/15226514.2013.856850.
Portulaca grandifloraPortulaca grandifloraAl, Copper, Iron, ZincHyperaccumulatorPhytoextractionVijayaraghavan K, Arockiaraj J, Kamala-Kannan S. Portulaca grandiflora as green roof vegetation: Plant growth and phytoremediation experiments. Int J Phytoremediation. 2017;19(6):537-544. doi:10.1080/15226514.2016.1267699
Portulaca oleraceaCommon Purslane, PortulacaCopper, Sodium chloride, Cadmium, SalinityAccumulator/Tolerant, HyperaccumulatorPhytoextraction1) (Phyto Textbook) Bes, C. M., Jaunatne R., and Mench M. 2013. Seed bank of Cu-contaminated topsoils at a wood preservation site: impacts of copper and compost on seed germination. Environmental Monitoring and Assessment 185 (2), pp. 2039-2053. 2) Devi S, Nandwal AS, Angrish R, Arya SS, Kumar N, Sharma SK. Phytoremediation potential of some halophytic species for soil salinity. Int J Phytoremediation. 2016;18(7):693-696. doi:10.1080/15226514.2015.1131229 3) Lacerda, Laís Pessôa De, et al. “Salinity Reduction and Biomass Accumulation in Hydroponic Growth of Purslane (Portulaca Oleracea).” International Journal of Phytoremediation, vol. 17, no. 3, 2014, pp. 235–241., doi:10.1080/15226514.2014.883494. 4) Hammami, Hossein, et al. “Weeds Ability to Phytoremediate Cadmium-Contaminated Soil.” International Journal of Phytoremediation, vol. 18, no. 1, 2015, pp. 48–53., doi:10.1080/15226514.2015.1058336.
Potamogeton crispus Curly pondweedCurlypondweedCurlypondweed.jpgCopper, LeadHyperaccumulatorN/ALu G, Wang B, Zhang C, et al. Heavy metals contamination and accumulation in submerged macrophytes in an urban river in China. Int J Phytoremediation. 2018;20(8):839-846. doi:10.1080/15226514.2018.1438354Hardiness zone 3-11.NNN
Potamogeton pectinatus Sago pondweedArsenic, Cadmium, Copper, Nickel, Lead, ZincHyperaccumulatorLu G, Wang B, Zhang C, et al. Heavy metals contamination and accumulation in submerged macrophytes in an urban river in China. Int J Phytoremediation. 2018;20(8):839-846. doi:10.1080/15226514.2018.1438354
Pseudomonas aeruginosa(is a common encapsulated, Gram-negative, rod-shaped bacterium that can cause disease in plants and animals, including humans.)Petroleum hydrocarbon, SaltAccumulatorPhytodegradation(Phyto Textbook) Leewis, M., -C., Reynolds, C. M., and Leigh, M. B. 2013. Long-term effects of nutrient addition and phytoremediation on diesel and crude oil contaminated soils in subarctic Alaska. Cold Regions Science and Technology, DOI, 10.1016/j.coldregions.2013.08.011.
Pseudotsuga menziesiiDouglas firCadmiumTolerantPhytoaccumulation(Phyto Textbook) Astier, C., Gloaguen, V., and Faugeron, C., 2014. Phytoremediation of Cadmium-contaminated soils by young Douglas Fir trees: effects of cadmium exposure on cell wall composition. International Journal of Phytoremediation 16, pp. 790-803.(Absorbed Cadmium retained in roots but transfer to aerial parts effective. Bark preferred storage)
Pteris cretica - Albo-LineataBrake FernCopperAccumulatorPhytoextraction, Phytostabilization, Rhizofiltration1) Feng R, Wang X, Wei C, Tu S. The accumulation and subcellular distribution of arsenic and antimony in four fern plants. Int J Phytoremediation. 2015;17(1-6):348-354. doi:10.1080/15226514.2013.773281 2) De la Torre JB, Claveria RJ, Perez RE, Perez TR, Doronila AI. Copper uptake by Pteris melanocaulon Fée from a Copper-Gold mine in Surigao del Norte, Philippines. Int J Phytoremediation. 2016;18(5):435-441. doi:10.1080/15226514.2015.1109603
Pteris ensiformis BurmSlender Brake FernArsenic, AntimonyAccumulatorPhytoextractionFeng R, Wang X, Wei C, Tu S. The accumulation and subcellular distribution of arsenic and antimony in four fern plants. Int J Phytoremediation. 2015;17(1-6):348-354. doi:10.1080/15226514.2013.773284
Pteris faurieiArsenic, AntimonyAccumulatorPhytoextractionFeng R, Wang X, Wei C, Tu S. The accumulation and subcellular distribution of arsenic and antimony in four fern plants. Int J Phytoremediation. 2015;17(1-6):348-354. doi:10.1080/15226514.2013.773282
Pteris multifidaSpider BrakeArsenic, Lead, CadmiumAccumulatorPhytofiltrationRahman F, Sugawara K, Huang Y, Chien MF, Inoue C. Arsenic, lead and cadmium removal potential of Pteris multifida from contaminated water and soil. Int J Phytoremediation. 2018;20(12):1187-1193. doi:10.1080/15226514.2017.1375896
Pteris vittataHyperaccumulating FernHyperaccumulatingFernHyperaccumulatingFern.jpgSingle super phosphate , di-ammonium phosphate (DAP), Arsenic, FluorideN/APhytoextraction1) U.S Environmental Protection Agency (EPA). Phytoremediation field studies database for chlorinated solvents, pesticides, explosives, and metals. http://www.afcee.af.mil/shared/media/document/AFD-071130-018 2) http://www.flickr.com/photos/10770266@N04/6222643318/(Photo Source)Hardy zone 8 to 10.NNN
Pteris vittata L. Chinese Brake FernChineseBrakeFernChineseBrakeFern.jpgDiphenylarsinic acidAccumlator/Tolerant, HyperaccumulatorPhytodegredation, Phytoextraction, Phytotransformation1) http://scialert.net/qredirect.php?doi=jest.2011.118.138&linkid=pdf (Chromium, Copper, Nickel and Zinc source) 2) Gui-Lan Duan, Y.-G. Zhu, Y.-P. Tong, C. Cai and R. Kneer (2005). “Characterization of Arsenate Reductase in the Extract of Roots and Fronds of Chinese Brake Fern, an Arsenic Hyperaccumulator” (Lead, Mercury, and Arsenic source) 3) http://www.flickr.com/photos/wilsonkao/4464016467/ (Photo Source) 4) (Phyto Textbook); (x2 articles) Ciurli, A., Lenzi, L., Alpi, A., and Pardossi, A. 2014. Arsenic uptake and translocation by plants in pot and field experiments. International Journal of Phytoremediation 16 (7-8), Special Issue: The 9th Interational Phytotechnology Society Conference -- Hasselt, Belgium 2012, pp. 804-823, DOI, 10.1080/15226514.2013.856850. ; Danh, L.T., Truong, P., Mammucari, R., and Foster, N. 2014. A crtical review of the arsenic uptake mechanisms and phytoremediation potential of Pteris vittata. International Journal of Phytoremediation 16 (5), pp. 42Plants are extracted at the end of summer and burned. Arsenic is accumulated in its above ground shoots. Hardiness zone 8-10 Phytotransformation?NNN
Pterocarpus macrocarpusRosewoodLead AccumulatorPhytostabilization(Phyto Textbook) Meeinkuirt, W., Pokethitiyook, P., Kruatrachue, M., Tanhan, P., and Chairyarat, R. 2012. Phytostabilization of a Pb-contaminated mine tailing by various tree species in pot and field trial experiments. International Journal of Phytoremediation 14 (9), pp. 925-938.
Puccinellia nuttallianaAlkaligrassLandfill leachateAccumulatorPhytodesalinationXu Q, Renault S, Yuan Q. Phytodesalination of landfill leachate using Puccinellia nuttalliana and Typha latifolia. Int J Phytoremediation. 2019;21(9):831-839. doi:10.1080/15226514.2019.1568383
Pusa Jai KisanOilseed, RapeseedNickelAccumulatorPhytoextractionAnsari MK, Ahmad A, Umar S, Zia MH, Iqbal M, Owens G. Genotypic variation in phytoremediation potential of Indian mustard exposed to nickel stress: a hydroponic study. Int J Phytoremediation. 2015;17(1-6):135-144. doi:10.1080/15226514.2013.862206
Pyrus calleryanaBradford Flowering PearPetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Tree. Variety Holmford. Hardiness zone 4-9.NNN
Quercus acutissima CarruthSawtooth OakZinc, Lead ,CopperAccumulatorShi X, Chen YT, Wang SF, et al. Phytoremediation potential of transplanted bare-root seedlings of trees for lead/zinc and copper mine tailings. Int J Phytoremediation. 2016;18(11):1155-1163. doi:10.1080/15226514.2016.1189399
Quercus palustrisPin OakPinOakPinOak.jpgPerchloroethylene (PCE), Trichloroethylene (TCE)  and by-products, Vinyl ChlorideN/AN/A1) http://www.flickr.com/photos/spweber/3956502820/(Photo Source) 2) Ferro, A., Chard, B., Gefell, M., Thompson, B., and R. Kjelgre 2000"Phytoremediation of Organic Solvents in Groundwater: Pilot Study at a Superfund Site". In: G. Wickramanayake, A. Gavaskar, B. Alleman, and V. Magar (eds.) Bioremediation and Phytoremediation of Chlorinated and Recalcitrant Compounds, p461-466. Battelle Press, Columbus, Ohio.; Ferro, A., Kennedy, J., Kjelgren, R., Rieder, J., and S. Perrin. 1999. "Toxicity Assessment of Volatile Organic Compounds in Poplar Trees". International Journal of Phytoremediation. 1(117.Hardiness Zones: Zones 4 - 8NNN
Quercus roburOakCopper, Zinc, Cadmium, LeadAccumulatorPhytostabilization (Phyto Textbook) Evangelou, M.W., Robinson, B.H., Gunthardt-Goerg, M.S., and Schlin, R. 2013. Metal uptake and allocation in trees grown on contaminated land: implications for biomass production. International Journal of Phytoremediation 15 (1), pp. 77-90.
Quercus virginianaLive OakLiveOakLiveOak.jpgTrichloroethylene (TCE)  and by-productsN/AN/A1) Jordahl, J., R. Tossell, M. Barackman and G. Vogt (2003) Phytoremediation for Hydraulic Control and Remediation: Beale 2) Air Force Base and Koppel Stockton Terminal. Abstracts from US EPA International Applied Phytotechnologies Workshop March 3-5, 2003 Chicago, IL 3) http://www.flickr.com/photos/tbridge/49318469/(Photo Source)Hardiness Zones: Zones 7 - 10NNN
Raphanus sativusRadish RadishRadish.jpgHeavy Metals and HydrocarbonsAccumulatorPhytostabilization1) U.S Environmental Protection Agency (EPA). Phytoremediation field studies database for chlorinated solvents, pesticides, explosives, and metals. http://www.afcee.af.mil/shared/media/document/AFD-071130-018 2) http://www.flickr.com/photos/dinesh_valke/2560911922/ (Photo Source) 3) (Phyto Textbook) Macci, C., Doni, S., Peruzzi, E., Bardella, S., Filippis, G., Ceccanti, B., and Masciandaro, G. 2012. A real-scale soil phytoremediation. Biodegredation 24 (4) pp. 521-541Hardiness Zones: 6NNN
Raphiolepis indicaIndian HawthornePetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Shrub. Variety: Snow. USDA hardiness zones: 8 through 11NNN
Rapistrum rugosumTurnipweedLeadAccumulatorSaghi A, Rashed Mohassel MH, Parsa M, Hammami H. Phytoremediation of lead-contaminated soil by Sinapis arvensis and Rapistrum rugosum. Int J Phytoremediation. 2016;18(4):387-392. doi:10.1080/15226514.2015.1109607
Rhus chinensis MillChinese SumacZinc, Lead ,CopperAccumulatorShi X, Chen YT, Wang SF, et al. Phytoremediation potential of transplanted bare-root seedlings of trees for lead/zinc and copper mine tailings. Int J Phytoremediation. 2016;18(11):1155-1163. doi:10.1080/15226514.2016.1189399
Rhus typhinaStaghorn SumacStaghornSumacStaghornSumac.jpgNickel, Polychlorinated Biphenyl (PCB)HyperaccumulatorN/A1) University of Minnesota Sustainable Urban Landscape Information Series. http://www.sustland.umn.edu/design/water4.html 2) http://www.flickr.com/photos/arthur_chapman/6226869357/(Photo Source) Stimulate PCB‐degrading bacteria and inhibit other microbes shrub or small tree. Cold Hardiness. USDA Zone 3NNN
Ricinus communisCastor beanCadmiumAccumulator/Tolerant, HyperaccumulatorPhytoextraction1) (Phyto Textbook) Wang, K., Huang, H., Zhu, Z., Li, T., He, Z., Yang, X., and Alva, A. 2013. Phytoextraction of Metals and Rhizoremediation of PAHs in Co-Contaminated Soil by Co-Planting of Sedum Alfredii with Ryegrass (Lolium Perenne) or Castor (Ricinus Communis). International Journal of Phytoremediation 15 (3), pp. 283-298. 2) Zhang H, Chen X, He C, et al. Use of Energy Crop (Ricinus communis L.) for Phytoextraction of Heavy Metals Assisted with Citric Acid. Int J Phytoremediation. 2015;17(7):632-639. doi:10.1080/15226514.2014.935287 3) Huang G, Guo G, Yao S, Zhang N, Hu H. Organic acids, amino acids compositions in the root exudates and Cu-accumulation in castor (Ricinus communis L.) Under Cu stress. Int J Phytoremediation. 2016;18(1):33-40. doi:10.1080/15226514.2015.1058333 4) Chhajro MA, Rizwan MS, Guoyong H, Jun Z, Kubar KA, Hongqing H. Enhanced accumulation of Cd in castor (Ricinus communis L) by soil-applied chelators. Int J Phytoremediation. 2016;18(7):664-670. doi:10.10
Rinorea bengalensisBengal RinoreaNickelHyperaccumulatorHamdan AM, Bijaksana S, Tjoa A, Dahrin D, Kirana KH. Magnetic characterizations of nickel hyperaccumulating plants (Planchonella oxyhedra and Rinorea bengalensis) from Halmahera, Indonesia. Int J Phytoremediation. 2019;21(4):364-371. doi:10.1080/15226514.2018.1524839
Robinia pseudoacacia Black locustBlacklocustBlacklocust.jpgHistidine, NickelAccumulator/Tolerant, HyperaccumulatorRhizodegradation1) Leigh, M.B., J. Fletcher, D.P. Nagle, P. Prouzova, M. Mackova and T. Macek (2003) Rhizoremediation of PCBS: Mechanistic and Field Investigations 2) Kang W, Bao J, Zheng J, Xu F, Wang L. Phytoremediation of heavy metal contaminated soil potential by woody plants on Tonglushan ancient copper spoil heap in China. Int J Phytoremediation. 2018;20(1):1-7. doi:10.1080/15226514.2014.950412 3) Ozen SA, Yaman M. Examination of correlation between histidine and nickel absorption by Morus L., Robinia pseudoacacia L. and Populus nigra L. using HPLC-MS and ICP-MS. Int J Phytoremediation. 2016;18(8):794-800. doi:10.1080/15226514.2015.1131243Hardiness zone 4-8.NNN
Rosa multifloraMultiflora RoseChromium, Nickel, Copper, Zinc, CadmiumAccumulatorPhytoextractionAntonkiewicz J, Ko?odziej B, Bieli?ska EJ. Phytoextraction of heavy metals from municipal sewage sludge by Rosa multiflora and Sida hermaphrodita. Int J Phytoremediation. 2017;19(4):309-318. doi:10.1080/15226514.2016.1225283
Rosa ssp.Paul's Scarlet RosePaulsScarletRosePaulsScarletRose.jpgPolychlorinated Biphenyl (PCB)N/APhytodegradation1) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 2) http://www.flickr.com/photos/elisabetta2005/4624027979/ (Photo Source)Paul's Scarlet rose is a red, natural climbing rose that can metabolize tetrachlorinated PCB 77. There are many varieties. USDA Hardiness Zone: 5 to 9USDA Hardiness Zone: 5 to 9NNN
Rumohra adiantiformisLeather Leaf FernPetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Perennial, Bulb, FernNNN
Sabel minorPalmetto BushPetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Shrub. USDA hardiness zones 8 through 11NNN
Saccharum spp.Sugarcaneexcess soil Ph(Phyto Textbook) Silveira, M. L., Vendramini, J. M. B., Sui, X., Sollenberger, L., and O'Connor, G. A. 2013. Screening perennial warm-season bioenergy crops as an alternative for phytoremediation of excess soil P. Bioenergy Reserach 6 (2) pp. 469-475.
Salicornia depressaVirginia GlasswortVirginiaGlasswortVirginiaGlasswort.jpgCadmium, LeadN/AN/A1) Gallagher, J.L and H.V. Kibby, 1980. Marsh plants as vectors in trace metal transport in Oregon tidal marshes. American Journal of Botany, 67: 1069-1074 2) http://www.flickr.com/photos/briangratwicke/2661217119/(Photo Source)NNN
Salicornia persicaAkhaniPetroleum hydrocarbon, SaltAccumulatorPhytodegradation(Phyto Textbook) Leewis, M., -C., Reynolds, C. M., and Leigh, M. B. 2013. Long-term effects of nutrient addition and phytoremediation on diesel and crude oil contaminated soils in subarctic Alaska. Cold Regions Science and Technology, DOI, 10.1016/j.coldregions.2013.08.011.
SalixWillowCadmium, Copper, Nickel, ZincAccumulatorPhytoaccumulation, Phytodegradation, Phytoextraction1) (Phyto Textbook) Lee, K. Y., and Doty, S. L. 2012. Phytoremediation of chlorpyrifos by Populus and Salix. International Journal of Phytoremediation 14 (1), pp. 48-61. 2) Greger M, Landberg T. Novel Field Data on Phytoextraction: Pre-Cultivation With Salix Reduces Cadmium in Wheat Grains. Int J Phytoremediation. 2015;17(10):917-924. doi:10.1080/15226514.2014.1003785
Salix albaWhite WillowWhiteWillowWhiteWillow.jpgpetroleum hydrocarbon Total petroleum hydrocarbonsN/AN/A1) http://www.flickr.com/photos/valdelobos/4821996402/(Photo Source) 2) Ferro, A., Chard, B., Gefell, M., Thompson, B., and R. Kjelgren. 2000. “Phytoremediation of Organic Solvents in Groundwater: Pilot Study at a Superfund Site”. In: G. Wickramanayake, A. Gavaskar, B. Alleman, and V. Magar (eds.) Bioremediation and Phytoremediation of Chlorinated and Recalcitrant Compounds, p461-466. Battelle Press, Columbus, Ohio.; Ferro, A., Kennedy, J., Kjelgren, R., Rieder, J., and S. Perrin. 1999. “Toxicity Assessment of Volatile Organic Compounds in Poplar Trees”. International Journal of Phytoremediation. 1(1): 9-17. 3) (Phyto Textbook) Ferro, A.M., Adham, T., Berra, B., and Tsao, D. 2013. Performance of deep-rooted phreatophytic trees at a site containing total petroleum hydrocarbons. International Journal of Phytoremediation 15 (3), pp. 232-244. USDA hardiness zones 2 through 8NNN
Salix alba "Niobe"Niobe Weeping WillowNiobeWeepingWillowNiobeWeepingWillow.jpgChromium, Hydrocarbons, Mercury, Organic Solvents, SilverN/AN/A1) http://tinyurl.com/6wv87g8ved=0CEAQ6AEwAA#v=onepage&q&f=false 2) http://www.flickr.com/photos/weretable/428264988/ (Photo Source)A weeping cultivar with golden bark. It may be used in wet soils and reaches a height and spread of about 50 feet. Hardiness zone 2-9NNN
Salix alba "Tristis"Golden Weeping WillowArsenic, Benzene, Chloroform, Lead, Mercury, Nickel, Perchloroethylene (PCE), Phosphorus, Silver, Toluene, Trichloroethylene (TCE)  and by-products, Tritium, ZincN/APhytostabilization, Phytoextraction, Phytodegradation, Rhizodegradation, Phytovolatilization1) Negri, M.C., et al 2003 Root Development and Rooting at Depths, in S.C. McCutcheon and J.L. Schnoor, eds., Phytoremediation: Transformation and Control of Contaminants: Hoboken, NJ, John Wiley & Sons, Inc. p233-262, 912-913 Quinn, J.J., et al 200 Predicting the Effect of Deep-Rooted Hybrid Poplars on the Groundwater Flow System at a Phytoremediation Site: International Journal of Phytoremediation, vol. 3, no. 1, p. 41-60TCE and PCE and breakdown products (trichloroacetic acid) were detected in branch tissue of trees planted in contaminated soil in less than a year. TCE and PCE present in trees down gradient of plume after 2 yrs. USDA Hardiness Zone: 4 to 9.NNN
Salix dasyclados Shrub WillowTotal petroleum hydrocarbonsAccumulatorRhizodegredation, Phytoextraction, 1) Mcintosh, Patrick, et al. “Breakdown of Low-Level Total Petroleum Hydrocarbons (TPH) in Contaminated Soil Using Grasses and Willows.” International Journal of Phytoremediation, vol. 18, no. 7, 2015, pp. 656–663., doi:10.1080/15226514.2015.1109598
Salix exiguaNarrowleaf WillowNarrowleafWillowNarrowleafWillow.jpgTrichloroethylene (TCE)  and by-productsN/AN/A1) http://en.wikipedia.org/wiki/List_of_hyperaccumulators 2) Jordahl, J., R. Tossell, M. Barackman and G. Vogt (2003) Phytoremediation for Hydraulic Control and Remediation: Beale 3) Air Force Base and Koppel Stockton Terminal. Abstracts from US EPA International Applied Phytotechnologies Workshop March 3-5, 2003 Chicago, IL 4) http://www.flickr.com/photos/plant_diversity/5001877532/ (Photo Source)Hydraulic control. USDA Hardiness Zone: 4 to 6NNN
Salix interiorSandbar WillowPolychlorinated Biphenyl (PCB), Polycyclic Aromatic Hydrocarbon (PAH)N/ARhizodegradation1) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf Also known to remediate DRO (Diesel Range Organics). Hardiness zones 2 through 8.NNN
Salix matsudanaChinese WillowCopper, CadmiumAccumulatorPhytoextractionWang WW, Ke Cheng L, Hao JW, Guan X, Tian XJ. Phytoextraction of initial cutting of Salix matsudana for Cd and Cu. Int J Phytoremediation. 2019;21(2):84-91. doi:10.1080/15226514.2016.1183574
Salix nigraBlack WillowBlackWillow.jpgBentazon, Cadmium, Copper, Endosulfan Sulfate, Ethyl, Nickel, Polycyclic Aromatic Hydrocarbon (PAH), Silver, Styrene, Trichloroethylene (TCE)  and by-products, Tritium, ZincAccumulatorPhytodegradation, Rhizodegradation, Phytoextration1)U.S. Department of Agriculture (USDA)- Natural Resources Conservation Service (NRCS) http://rydberg.biology.colostate.edu/Phytoremediation/2003/Knuth/species_selection_tool.htm 2)McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant_species_phyto.pdf 3)USDA NRCS Plant Materials Center, Manhattan, Kansas & Kansas State University, Forestry Researchhttp://plants.usda.gov/factsheet/pdf/fs_sani.pdf - Nickel, pah, silver 4)Phytoremediation experimentation with the herbicide bentazon. Robert MarConger, & Ralph J. Portier. http://onlinelibrary.wiley.com/doi/10.1002/rem.3440070203/abstract (bentazon) 5) http://www.flickr.com/photos/gravitywave/2350415354/ (Photo Source)Interesting qualities: Extremely fibrous roots help to prevent the soil erosion, fine textured shade tree, first plants to provide honey bees with nectar and pollen in spring. Growth rate: Rapid. Medium sized tree ranging from 30-60 HabitaNNN
Salix pentandraLaurel-Leaved WillowLaurelLeavedWillowLaurelLeavedWillow.jpgArsenic, Chloroform, Lead, Perchloroethylene (PCE), Trichloroethylene (TCE)  and by-products, Tritium, ZincN/APhytostabilization, Phytoextraction, Phytodegradation, Rhizodegradation1) Negri, M.C., et al 2003 Root Development and Rooting at Depths, in S.C. McCutcheon and J.L. Schnoor, eds., Phytoremediation: Transformation and Control of Contaminants: Hoboken, NJ, John Wiley & Sons, Inc. p233-262, 912-913 Quinn, J.J., et al 200 Predicting the Effect of Deep-Rooted Hybrid Poplars on the Groundwater Flow System at a Phytoremediation Site: International Journal of Phytoremediation, vol. 3, no. 1, p. 41-60 2) http://www.flickr.com/photos/sahlgoode/4707739032/(Photo Source)TCE and PCE and breakdown products (trichloroacetic acid) were detected in branch tissue of trees planted in contaminated soil in less than a year. TCE and PCE present in trees down gradient of plume after 2 yrs.NNN
Salix pentaphyllum "Prairie Cascade"Prarie Cascade WillowPrarieCascadeWillowPrarieCascadeWillow.jpgArsenic, Chloroform, Lead, Perchloroethylene (PCE), Trichloroethylene (TCE)  and by-products, Tritium, ZincN/APhytostabilization, Phytoextraction, Phytodegradation, Rhizodegradation1) Negri, M.C., et al 2003 Root Development and Rooting at Depths, in S.C. McCutcheon and J.L. Schnoor, eds., Phytoremediation: Transformation and Control of Contaminants: Hoboken, NJ, John Wiley & Sons, Inc. p233-262, 912-913 Quinn, J.J., et al 200 Predicting the Effect of Deep-Rooted Hybrid Poplars on the Groundwater Flow System at a Phytoremediation Site: International Journal of Phytoremediation, vol. 3, no. 1, p. 41-60 2) http://www.flickr.com/photos/40221739@N03/3724515264/(Photo Source)TCE and PCE and breakdown products (trichloroacetic acid) were detected in branch tissue of trees planted in contaminated soil in less than a year. TCE and PCE present in trees down gradient of plume after 2 yrs. USDA Hardiness Zone: 2 to 5NNN
Salix rubensHybrid Crack WillowCadmium, Zinc, CopperAccumulatorPhytoextractionKacálková L, Tlustoš P, Száková J. Phytoextraction of risk elements by willow and poplar trees. Int J Phytoremediation. 2015;17(1-6):414-421. doi:10.1080/15226514.2014.910171
Salix ssp.Hybrid WillowHybridWillowHybridWillow.jpgCadmium, Chromium, Copper, Nickel, Polycyclic Aromatic Hydrocarbon (PAH), Silver, ZincN/APhytodegradation, Rhizodegradation, Phytoextraction1) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 2) Interstate Technologoy and Regulation Cooperation Work Group. Phytoremediation Decision Tree, ITRC. http://www.itrcweb.org/documents/phyto-1.pdf 3) http://www.flickr.com/photos/fabelfroh/2478759140/(Photo Source) Deciduous trees or shrubs need plenty of water. Coastal plain willow and black willow shown to uptake and degrade percholate in soils as well as phytoextract metals (Cadmium, Zinc, Copper) For Phytotransformation the design requirements for the plant mateNNN
Salix viminalisBasket WillowBasketWillowBasketWillow.jpgCadmium, Magnesium, Iron, Copper, Lead, Nickel, ZincAccumulator, HyperaccumulatorPhytoextraction, Phytoscreening, Phytostabilization1) Enhancing Phytoextraction: The Effect of Chemical Soil Manipulation on Mobility, Plant Accumulation, and Leaching of Heavy Metals, by Ulrich Schmidt. 2) Yu X.Z., Zhou P.H. and Yang Y.M., The potential for phytoremediation of iron cyanide complex by Willows. 3) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. pg 19 4) http://www.flickr.com/photos/stefanoricci/4389065307/ (Photo Source) 5) Borišev M, Pajevi? S, Nikoli? N, et al. Magnesium and iron deficiencies alter Cd accumulation in Salix viminalis L. Int J Phytoremediation. 2016;18(2):164-170. doi:10.1080/15226514.2015.1073670 6) (Phyto Textbook) Efe, S.I., and Okpali, A.E. 2012. Management of petroleum impacted soil with phytoremediation and soil amendments in Expan Delta State, Nigeria. Journal of Environmental Protection 3, pp. 386-393. 7) (Phyto Textbook) Algreen, M., Trapp, S., and Rein, A. 2013. Phytoscreening anAlso known as Common Osier. Hardiness zone 3NNN
Salix x auero-pendula CL - J(11)Weeping WillowPHE (phenanthrene, PHEr cadmium)AccumulatorSun, Y. Y., et al. “Phytoremediation of Soils Contaminated with Phenanthrene and Cadmium by Growing Willow (Salix×Aureo-PendulaCL 'j1011').” International Journal of Phytoremediation, vol. 18, no. 2, 2015, pp. 150–156., doi:10.1080/15226514.2015.1073668.
Salix x smithiana WiildSmith WillowCadmium, Zinc, CopperAccumulatorPhytoextractionKacálková L, Tlustoš P, Száková J. Phytoextraction of risk elements by willow and poplar trees. Int J Phytoremediation. 2015;17(1-6):414-421. doi:10.1080/15226514.2014.910171
Salvia sclareaClaryChromium, Nickel, Iron, LeadAccumulatorChand S, Yaseen M, Rajkumari, Patra DD. Application of Heavy Metal Rich Tannery Sludge on Sustainable Growth, Yield and Metal Accumulation by Clarysage (Salvia sclarea L.). Int J Phytoremediation. 2015;17(12):1171-1176. doi:10.1080/15226514.2015.1045128
Salvinia minimaWater spanglesCadmium, Nickel, Lead, ZincAccumulatorIha DS, Bianchini I Jr. Phytoremediation of Cd, Ni, Pb and Zn by Salvinia minima. Int J Phytoremediation. 2015;17(10):929-935. doi:10.1080/15226514.2014.1003793
SansevieriaSnakeplantTrimethylamineTolerantVolatilzationBoraphech P, Suksabye P, Kulinfra N, Kongsang W, Thiravetyan P. Cleanup of trimethylamine (fishy odor) from contaminated air by various species of Sansevieria spp. and their leaf materials. Int J Phytoremediation. 2016;18(10):1002-1013. doi:10.1080/15226514.2016.1183569
Sansevieria trifasciataSnake PlantSnakePlantSnakePlant.jpgTrimethylamineAccumulatorPhytoextraction1) B.C Wolverton Ph.D -Principal investigator. NASA. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930073077_1993073077.pdf 2) Plants "Clean" Air Inside Our Homes (kilde NASA) 3) Wolverton, B.C. (1996) How to Grow Fresh Air. New York: Penguin Books. 4)B. C. Wolverton and J.D. Wolverton. "Plants and Soil Microorganisms: Removal of Formaldehyde, Xylene, Ammonia From the Indoor Environment". Retrieved 2011-08-27. 5) http://www.flickr.com/photos/tweak_ui/2524453572/ (Photo Source) Hardiness zones 9B through 11NNN
Schizachyrium scopariumLittle BluestemLittleBluestemLittleBluestem.jpgCopperN/AN/A1) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 2) http://www.flickr.com/photos/usfwsmtnprairie/6188871250/(Photo Source)USDA Hardiness Zone 3-9NNN
Scirpus acutusHardstem BulrushHardstemBulrushHardstemBulrush.jpgBenzeneN/AN/A1) http://www.wallawallanursery.com/detail.cfm?gotopage=11&nid=2640&SearchGroup=grasses&SearchGen=&SearchVar=&SearchSPE= 2) http://www.flickr.com/photos/33590535@N06/3574508714/ (Photo Source)USDA Hardiness Zone 3-9NNN
SedumSedumCadmium, ZincTolerant, HyperaccumulatorPhytoextraction, Phytoaccumulation1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003 2) (Phyto Textbook) Xing, Y., Peng, H., Gao, L., Luo, A., and Yang, X. 2013. A Compound Containing Substituted Indole Ligand from a Hyperaccumulator Sedum Alfredii Hance Under Zn Exposure. International Journal of Phytoremediation 15 (10), pp. 952-964. - Pan F, Meng Q, Luo S, et al. Enhanced Cd extraction of oilseed rape (Brassica napus) by plant growth-promoting bacteria isolated from Cd hyperaccumulator Sedum alfredii Hance. Int J Phytoremediation. 2017;19(3):281-289. doi:10.1080/15226514.2016.1225280 3) (Phyto Textbook) Lu, L., Tian, S., Yang, X., Peng, H., and Li, T. 2013. Improved cadmium uptake and accumulation in the hyperaccumulator Sedum alfredii: the impact of citric acid and tartaric acid. Journal of Zhejang University Science B 14 (2), pp. 106-114. 4) (Phyto Textbook) Wang, K., Huang, H., Zhu, Z., Li, T., He, Z., Yang, X., and Alva,Groundcover. Hardiness Zone: 3-10NNN
Senecio salignusBarkleyanthusZincAccumulatorPhytoaccumulation(Phyto Textbook) Cortes-Jimenez, E., Mugica-Alvarez, V., Gonzalez-Chavez, M., Carrillo-Gonzalez, R., Gordillo, M., and Mier, M. 2013. Natural revegetation of alkaline tailing heaps at Taxco, Guerrero, Mexico. International Journal of Phytoremediatio15 (2), pp. 127-141.
Sesbania asperSesbaniaMetalHyperaccumulatorPhytoextractionMishra T, Singh NB, Singh N. Restoration of red mud deposits by naturally growing vegetation. Int J Phytoremediation. 2017;19(5):439-445. doi:10.1080/15226514.2016.1244162
Sesbania puniceaRed sesbaniaMetalHyperaccumulatorPhytoextractionMishra T, Singh NB, Singh N. Restoration of red mud deposits by naturally growing vegetation. Int J Phytoremediation. 2017;19(5):439-445. doi:10.1080/15226514.2016.1244162
Sesuvium portulacastrum L.Shoreline PurslaneChromium, Cadmium, Zinc, Copper, NaClAccumulatorPhytoextractionAyyappan D, Sathiyaraj G, Ravindran KC. Phytoextraction of heavy metals by Sesuvium portulacastrum l. a salt marsh halophyte from tannery effluent. Int J Phytoremediation. 2016;18(5):453-459. doi:10.1080/15226514.2015.1109606
Sida hermaphroditaVirginia Mallow, Virginia fanpetalsZinc, Lead, Chromium, Nickel, Copper, Zinc, CadmiumAccumulatorPhytoextraction1) (Phyto Textbook) Kocon, A., and Matyka, M. 2012. Phytoextractive potential of Miscanthus giganteus and Sida hermaphrodita growing under moderate pollution of soil with Zn and Pb. Journal of Food, Agriculture and Environment 10 (2), pp. 1253-1256. 2) Antonkiewicz J, Ko?odziej B, Bieli?ska EJ. Phytoextraction of heavy metals from municipal sewage sludge by Rosa multiflora and Sida hermaphrodita. Int J Phytoremediation. 2017;19(4):309-318. doi:10.1080/15226514.2016.1225283
Silene paradoxaCaryophyllaceaeArsenic, Cadmium, Cobalt, Chromium, Cobaltpper, Iron, Manganese, Nickel, Lead and ZincAccumulatorPhytostabilization(Phyto Textbook) Pignattelli, S., Colzi, I., Buccianti, A., Cecchi, L., Arnetoli, M., Monnanni, R., Gabbrielli, R., and Gonnelli, C. 2012. Exploring element accumulation patterns of a metal excluder plant naturally colonizing a highly contaminated soil. Journal of Hazardous Materials 227 pp. 362-369.
Silene vulgarisBladder CampionBladderCampionBladderCampion.jpgCadmium, ZincN/APhytostabilization, Phytoextraction1) Oyler, J. Blue Mountain Superfund Remediation Project, Palmerton, PA. Powerpoint presentation. June 10, 2004. ITRC Phytotechnologies conference 2) http://www.flickr.com/photos/esellers/5846184794/ (Photo Source)Hardiness zone 1-10NNN
Silybum marianumMilk thistleMetalAccumulatorPhytostabilization1) Hammami H, Alaie E, Dastgheib SMM. The ability of Silybum marianum to phytoremediate cadmium and/or diesel oil from the soil. Int J Phytoremediation. 2018;20(8):756-763. doi:10.1080/15226514.2018.1425664 2) (Phyto Textbook) Perrino, E. V., Brunetti, G., and Farrag, K. 2013. Plant communities in multi-metal contaminated soils: a case study in the National Park of Alta Murgia (Apulia region-Southern Italy). International Journal of Phytoremediation 16, pp. 871-888.
Sinapis albaWhite mustardCadmiumAccumulatorPhytoextractionBulak P, Lata L, Plak A, et al. Electromagnetic field pretreatment of Sinapis alba seeds improved cadmium phytoextraction. Int J Phytoremediation. 2018;20(4):338-342. doi:10.1080/15226514.2017.1381943
Sinapis arvensisCharlock MustardMetalAccumulatorPhytostabilization1) Saghi A, Rashed Mohassel MH, Parsa M, Hammami H. Phytoremediation of lead-contaminated soil by Sinapis arvensis and Rapistrum rugosum. Int J Phytoremediation. 2016;18(4):387-392. doi:10.1080/15226514.2015.1109607 2) (Phyto Textbook) Perrino, E. V., Brunetti, G., and Farrag, K. 2013. Plant communities in multi-metal contaminated soils: a case study in the National Park of Alta Murgia (Apulia region-Southern Italy). International Journal of Phytoremediation 16, pp. 871-888.
Solanum nigrumEuropean Black NightshadeZinc, CadmiumAccumlator/Tolerant, HyperaccumulatorPhytoaccumulation1) Samardjieva KA, Gonçalves RF, Valentão P, et al. Zinc Accumulation and Tolerance in Solanum nigrum are Plant Growth Dependent. Int J Phytoremediation. 2015;17(1-6):272-279. doi:10.1080/15226514.2014.898018 2) Hammami, Hossein, et al. “Weeds Ability to Phytoremediate Cadmium-Contaminated Soil.” International Journal of Phytoremediation, vol. 18, no. 1, 2015, pp. 48–53., doi:10.1080/15226514.2015.1058336. 3) (Phyto Textbook) Wei, S., Clark, G., Doronila, A. I., Jin, J., and Monsant, A. C. 2012. Cd Hyperaccumulative Characteristics of Australia Ecotype Solanum Nigrum L. and Its Implication in Screening Hyperaccumulator. International Journal of Phytoremediation 15, pp. 199.205.
Solanum surattenseSolanum surattenseIron, Manganese, Copper, Lead, Chromium, Nickel, CadmiumAccumulatorPhytostabilizationPandey SK, Bhattacharya T, Chakraborty S. Metal phytoremediation potential of naturally growing plants on fly ash dumpsite of Patratu thermal power station, Jharkhand, India. Int J Phytoremediation. 2016;18(1):87-93. doi:10.1080/15226514.2015.1064353
Solidago hispidaHairy Golden RodAluminum, Trichloroethylene (TCE)  and by-productsHyperaccumulator, AccumulatorN/A1) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plan_species_phyto.pdf 2) Grauer & Horst 1990; McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant_species_phyto.pdf pg 891Some species shown to metabolize TCE. From CanadaNNN
Sonchus transcaspicusSow thistlesNickel, Copper, Cadmium, Cobalt, Manganese, Lead, Chromium Zinc AccumulatorPhytostabilization (Phyto Textbook) Lu, Y., Li, X., He, M., and Zeng, F. 2013. Behavior of native species Arrhenatherum elatius (Poaceae) and Sonchus transcaspicus (Asteraceae) exposed to a heavy metal polluted field: plant metal concentration phytotoxicity and detoxification responses. International Journal of Phytoremediation 15, pp. 924-937.
Sorghum bicolorBroom-cornChromiumAccumulator/TolerantPhytoaccumulation, Phytoextraction1) (Phyto Textbook) Soudek, P., Petrova, S., Vankova, R., Song, J., and Vanek, T. 2014. Accumulation of heavy metals using Sorghum sp.. Chemosphere 104, pp. 15-24. 2) Ariana Carramaschi Francato Zancheta, Cleide Aparecida De Abreu, Fernando César BachiegaZambrosi, Norma de Magalhães Erismann & Ana Maria Magalhães Andrade Lagôa (2015) Cadmium Accumulationby Jack-Bean and Sorghum in Hydroponic Culture, International Journal of Phytoremediation, 17:3, 298-303, DOI:10.1080/15226514.2014.883492 (6) (PDF) Cadmium Accumulation by Jack-Bean and Sorghum in Hydroponic Culture. Available from: https://www.researchgate.net/publication/268336638_Cadmium_Accumulation_by_Jack-Bean_and_Sorghum_in_Hydroponic_Culture [accessed Jun 25 2020]. 3) Padmapriya S, Murugan N, Ragavendran C, Thangabalu R, Natarajan D. Phytoremediation potential of some agricultural plants on heavy metal contaminated mine waste soils, salem district, tamilnadu. Int J Phytoremediation. 2016;18(3):288-294. doi:10.1080/15226514.
Sorghum halepense (L.)Johnson Grass, Aleppo GrassJohnsonGrassAleppoGrassJohnsonGrassAleppoGrass.jpgAluminum, Arsenic, Cesium, Copper, Hydrocarbons, Manganese, Nickel, Uranium, ZincAccumulatorRhizodegradation1) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. 2) Phytoremediation of Radio¬nuclides. Dushenkov et al. 1998, Negri and Hinchman 2000, Huang et al. 1998, et al. 1997, Negri and Hinchman 2000, Dushenkov et al. 1998. http://rydberg.biology.colostate.edu/Phytoremediation/2000/Lawra/BZ580.htm (Aluminum source) 3)http://www.flickr.com/photos/dok1/2717362677/(Photo Source) Glomus mosseae as chelating agent (amendment). It increases the surface area of the plant roots, allowing roots to acquire more nutrients, and water, therefore more available radionuclides are found in soil solution.NNN
Sparganium eurycarpum Common Bur-reedBur ReedCommonBurreed.jpgLeadAccumulatorRhizofiltration1) University of Minnesota Sustainable Urban Landscape Information Series. http://www.sustland.umn.edu/design/water4.html 2) http://www.flickr.com/photos/ken-ichi/4813924127/" (Photo Source) Stimulates bacteria and inhibits other microbes flowering plant. Hardiness zone 5NNN
Solidago hispidaHairy Golden RodAluminum, Trichloroethylene (TCE)  and by-productsHyperaccumulator, AccumulatorN/A1) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plan_species_phyto.pdf 2) Grauer & Horst 1990; McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant_species_phyto.pdf pg 891Some species shown to metabolize TCE. From CanadaNNN
Spartina pectinata Prairie Cord GrassSpartina pectinataPrairieCordGrass.jpgCadmium, Copper, NitrogenN/AN/A1) April 2003, Jeremiah Knuth, Department of Civil Engineering, Colorado State University.http://rydberg.biology.colostate.edu/Phytoremediation/2003/Knuth/home.htm 2) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 3) http://www.flickr.com/photos/plant_diversity/3918529194/ (Photo Source) 4) USDA NRCS Plant Materials Center, Manhattan, Kansas & Kansas State University, Forestry Researchhttp://plants.usda.gov/factsheet/pdf/fs_sani.pdf Qualities: It has a stiff stem and vigorous rhizomes that enable it to provide good shoreline cover. Growth Rate: Rapid, mature height of 8’. Duration, Growth Habit: Perennial, Graminoid. Drought Tolerance: Low. Moisture Use: High. Salinity ToleranNNN
Spartina foliosaCordgrassAtrazine, Petroleum, Trichloroethylene (TCE)  and by-productsAccumulator of TCE, Petroleum, and AtrazineRhizofiltration1) http://www.jandcwaterworks.com/most-desirable-plants.htmEmergent Height: 3-6 ft. Root Type: Fibrous Water Use: High Used to break down glfycol antifreeze and carbon dioxide into water. Hardiness zone 7NNN
Spinacia oleraceaSpinach20- HydroxyecdysoneAccumulator/TolerantPhytoextraction, Phytodesalination1) Bareen FE, Saeed S, Afrasiab H. Differential mobilization and metal uptake versus leaching in multimetal soil columns using EDTA and three metal bioaccumulators. Int J Phytoremediation. 2017;19(12):1109-1117. doi:10.1080/15226514.2017.1328391 2) Muchate NS, Rajurkar NS, Suprasanna P, Nikam TD. Evaluation of Spinacia oleracea (L.) for phytodesalination and augmented production of bioactive metabolite, 20-hydroxyecdysone. Int J Phytoremediation. 2018;20(10):981-994. doi:10.1080/15226514.2018.1452184
Spirea sp.Neon FlashPetroleumTolerantN/AShrub. hardiness zones: 4 - 9 NNN
Spirodela polyrhiza Giant DuckweedGiantDuckweedGiantDuckweed.jpgAluminum, Arsenic, Cadmium, NitrateHyperaccumulator of NitratePhytodegradation1) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf. pg 898 (Aluminum, Arsenic, and Cadmium source) 2) http://www.flickr.com/photos/dandelion-and-burdock/5970812605/(Photo Source) 3) McCutcheon & Schnoor 2003, Phytoremediation. New Jersey, John Wiley & Sons pg 898, 891 4) Movafeghi A, Khataee AR, Moradi Z, Vafaei F. Biodegradation of direct blue 129 diazo dye by Spirodela polyrrhiza: An artificial neural networks modeling. Int J Phytoremediation. 2016;18(4):337-347. doi:10.1080/15226514.2015.1109588 Used to reduce photoautotrophic algae, purifier. Native to North America.NNN
Stellaria calycanthaNorthern StarwortNorthernStarwortNorthernStarwort.jpgCadmiumAccumulatorN/A1) Institute for Environmental Research and education (IERE). (2003 January). Vashon Heavy Metal Phytoremediation Study Sampling and Analysis Strategy (DRAFT). http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 2)http://www.flickr.com/photos/7147684@N03/3815706193/ (Photo Source)Low sprawling perennial. A number of varieties are common in the NW.NNN
Stellaria mediaChickweedChickweedChickweed.jpgCesiumAccumulatorN/A1) Phytoremediation of Radio¬nuclides. Dushenkov et al. 1998, Negri and Hinchman 2000, Huang et al. 1998, et al. 1997, Negri and Hinchman 2000, Dushenkov et al. 1998. http://rydberg.biology.colostate.edu/Phytoremediation/2000/Lawra/BZ580.htm 2) http://www.flickr.com/photos/pipdiddly/3614060837/ (Photo Source) Grass or Forb species able to accumulate radionuclides. Hardiness zone 2-10.NNN
Stephanandra incisaLaceshrubParticulate matterAccumulatorPhytoaccumulation(Phyto Textbook) Saebo, A., Popek, R., Nawrot, B., Hanslin, H., Gawronska, H. and Gawronski, S. 2013. Plant species differences in particulate matter accumulation on leaf surfaces. Science of the Total Envrionment 427, pp. 347-354.
Stipa austroitalica Martinovský subsp. austroitalicaGrassMetalPhytostabilization(Phyto Textbook) Perrino, E. V., Brunetti, G., and Farrag, K. 2013. Plant communities in multi-metal contaminated soils: a case study in the National Park of Alta Murgia (Apulia region-Southern Italy). International Journal of Phytoremediation 16, pp. 871-888.
Strelitzia reginaeBird of ParadisePetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Shrub. Hardiness zone 9-11NNN
Suaeda fruticosaShrubby SeablightSalinityHyperaccumulatorPhytoextractionDevi S, Nandwal AS, Angrish R, Arya SS, Kumar N, Sharma SK. Phytoremediation potential of some halophytic species for soil salinity. Int J Phytoremediation. 2016;18(7):693-696. doi:10.1080/15226514.2015.1131229
Suaeda nudifloraSeepweedsSalinityAccumulatorPhytoextractionDevi S, Nandwal AS, Angrish R, Arya SS, Kumar N, Sharma SK. Phytoremediation potential of some halophytic species for soil salinity. Int J Phytoremediation. 2016;18(7):693-696. doi:10.1080/15226514.2015.1131229
Tagetes minutaUpright Marigold, Southern Cone MarigoldChromium, Nickel, Iron, Manganese, Cobalt, Copper, Zinc, LeadAccumulatorPhytoextraction1) Nawab J, Khan S, Shah MT, Khan K, Huang Q, Ali R. Quantification of Heavy Metals in Mining Affected Soil and Their Bioaccumulation in Native Plant Species. Int J Phytoremediation. 2015;17(9):801-813. doi:10.1080/15226514.2014.981246 2) Cid CV, Rodriguez JH, Salazar MJ, Blanco A, Pignata ML. Effects of co-cropping Bidens pilosa (L.) and Tagetes minuta (L.) on bioaccumulation of Pb in Lactuca sativa (L.) growing in polluted agricultural soils. Int J Phytoremediation. 2016;18(9):908-917. doi:10.1080/15226514.2016.1156636
Tagetes patulaMarigold, French marigoldChromium, Copper, CadmiumAccumulatorPhytoextraction1) Bareen FE, Saeed S, Afrasiab H. Differential mobilization and metal uptake versus leaching in multimetal soil columns using EDTA and three metal bioaccumulators. Int J Phytoremediation. 2017;19(12):1109-1117. doi:10.1080/15226514.2017.1328391 2) Sun R, Sun Q, Wang R, Cao L. Cadmium accumulation and main rhizosphere characteristics of seven French marigold (Tagetes patula L.) cultivars. Int J Phytoremediation. 2018;20(12):1171-1178. doi:10.1080/15226514.2017.1375894
Tamarix spp.Salt CedarSaltCedarSaltCedar.jpgArsenic, Cadmium, Calcium, Copper, Lead, ManganeseN/AN/A1) ITRC. 2004. Phytotechnologies Workshop. Harrisburg, PA. June 9-10, 2004. 2) http://www.flickr.com/photos/judybaxter/168112542/(Photo Source)Hydraulic control, high salinity. USDA hardiness zones 2 to 7NNN
Taraxacum officinaleDandelionCadmiumAccumulatorHammami, Hossein, et al. “Weeds Ability to Phytoremediate Cadmium-Contaminated Soil.” International Journal of Phytoremediation, vol. 18, no. 1, 2015, pp. 48–53., doi:10.1080/15226514.2015.1058336.
Taraxacum ohwianum Kitam.CadmiumHyperaccumulatorPhytostabilizationCheng H, Liu Q, Ma M, Liu Y, Wang W, Ning W. Cadmium tolerance, distribution, and accumulation in Taraxacum ohwianum Kitam. as a potential Cd-hyperaccumulator. Int J Phytoremediation. 2019;21(6):541-549. doi:10.1080/15226514.2018.1537240
Taxus baccataEnglish YewParticulate matterAccumulatorPhytoaccumulation(Phyto Textbook) Saebo, A., Popek, R., Nawrot, B., Hanslin, H., Gawronska, H. and Gawronski, S. 2013. Plant species differences in particulate matter accumulation on leaf surfaces. Science of the Total Envrionment 427, pp. 347-354.
Taxus mediaAnglojap YewParticulate matterAccumulatorPhytoaccumulation(Phyto Textbook) Saebo, A., Popek, R., Nawrot, B., Hanslin, H., Gawronska, H. and Gawronski, S. 2013. Plant species differences in particulate matter accumulation on leaf surfaces. Science of the Total Envrionment 427, pp. 347-354.
Tecomaria capensisCape HoneysucklePetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Shrub. Variety: Orange. Hardiness zone 9-11.NNN
Telfairia occidentalFluted pumpkinChromiumTolerantPhytoextractionPadmapriya S, Murugan N, Ragavendran C, Thangabalu R, Natarajan D. Phytoremediation potential of some agricultural plants on heavy metal contaminated mine waste soils, salem district, tamilnadu. Int J Phytoremediation. 2016;18(3):288-294. doi:10.1080/15226514.2015.1085832
Thinopyrum intermedium ssp.'Oahe' Intermediate WheatgrassCadmium, ZincN/APhytostabilization, PhytoextractionOyler, J. Blue Mountain Superfund Remediation Project, Palmerton, PA. Powerpoint presentation. June 10, 2004. ITRC Phytotechnologies conferenceMedia type: manufactured soil (blend of treated municipal solids, power plant fly ash, and agricultural limestone) NNN
Thlaspi caerulescensAlpine PennycressAlpinePennycressAlpinePennycress.jpgAluminum, Arsenic, Cadmium, Chromium, Cobalt, Copper, Lead, Nickel, ZincHyperaccumulatorPhytoextraction, Phytostabilization1) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. pg 891, 898. 2)Interstate Technologoy and Regulation Cooperation Work Group. Phytoremediation Decision Tree, ITRC. http://www.itrcweb.org/documents/phyto-1.pdf 3) Oyler, J. Blue Mountain Superfund Remediation Project, Palmerton, PA.-Cadmium, Zinc 4) PowerPoint presentation. June 10, 2004. ITRC Phytotechnologies conference. 5) http://www.flickr.com/photos/23882161@N03/3038231457/ (Photo Source) Organic material. H-1500 milligrams per kilogram of dry weight. 1 recorded plantNNN
Thuja occidentalisRheingold ArborvitaePetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Shrub. Hardiness zones: 4 - 8NNN
Tilia coradata Mill.Littleleaf LindenParticulate Matter, Polycyclic aromatic hydrocarbons , Heavy MetalsAccumulatorBioindicatorPopek R, ?ukowski A, Bates C, Oleksyn J. Accumulation of particulate matter, heavy metals, and polycyclic aromatic hydrocarbons on the leaves of Tilia cordata Mill. in five Polish cities with different levels of air pollution. Int J Phytoremediation. 2017;19(12):1134-1141. doi:10.1080/15226514.2017.1328394
Trachelospermum asiaticumAsian JasminePetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Groundcover. Hardiness zones 7-11NNN
Tradescantia bracteataLongbract SpiderwortLongbractSpiderwortLongbractSpiderwort.jpgCesium, Cobalt, Plutonium, Strontium, Tritium, UraniumPhytoindicatorN/A1) Phytoremediation of Radio¬nuclides. Dushenkov et al. 1998, Negri and Hinchman 2000, Huang et al. 1998, et al. 1997, Negri and Hinchman 2000, Dushenkov et al. 1998. http://rydberg.biology.colostate.edu/Phytoremediation/2000/Lawra/BZ580.htm 2) http://www.flickr.com/photos/rojabro/6385111425/(Photo Source) Plant stamins turn pink when exposed to radionuclides. Plants will be used in various areas of the site to test for radionucludes in the soil. Acts an indicator for radionuclides because their stamens are usually blue or blue-purple in color, but when exNNN
Trifolium repensWhite CloverWhiteCloverWhiteClover.jpgDiesel Fuel, Hydrocarbons, Lead, Polychlorinated Biphenyl (PCB), Polycyclic Aromatic Hydrocarbon (PAH)Accumulator Rhizodegradation1) Phytoremediation of Radio¬nuclides. Dushenkov et al. 1998, Negri and Hinchman 2000, Huang et al. 1998, et al. 1997, Negri and Hinchman 2000, Dushenkov et al. 1998. http://rydberg.biology.colostate.edu/Phytoremediation/2000/Lawra/BZ580.htm 2) http://www.flickr.com/photos/phil_sellens/3657219961/(Photo Source) 3) Robison, Diana. “PHYTOREMEDIATION OF HYDROCARBON-CONTAMINATED SOIL.” UniversityofSaskatchewan, 2003. Web. 18 Feb2011. . Grass or Forb species able to accumulate radionuclides. Introduced perennial herb, deep rooting, enhances microbial activity and degradation of PAH’s. nitrogen fixer, and PCB metabolizer. Hardiness: USDA Zone 4aNNN
Triglochin striataStreaked Arrow GrassPetroleum hydrocarbons AccumulatorRhizoremediation(Phyto Textbook) Ribeiro, H., Almeida, C., Mucha, A., ad Bordalo, A. 2013. Influence of different salt marsh plants on hydrocarbon degrading microorganisms abundance throughout a phenological cycle. International Journal of Phytoremediation 15 (3), pp. 245-256.
Tripsacum dactyloidesEastern GamagrassTripsacum dactyloidesEasternGamagrass.jpgAnthracene, Arsenic, Chloroform, Lead, Perchloroethylene (PCE), Polychlorinated Biphenyl (PCB)N/APhytostabilization, Phytoextraction, Phytodegradatino, Rhizodegradation1) Negri, M.C., et al 2003 Root Development and Rooting at Depths, in S.C. McCutcheon and J.L. Schnoor, eds., Phytoremediation: Transformation and Control of Contaminants: Hoboken, NJ, John Wiley & Sons, Inc. p233-262, 912-913 Quinn, J.J., et al 200 Predicting the Effect of Deep-Rooted Hybrid Poplars on the Groundwater Flow System at a Phytoremediation Site: International Journal of Phytoremediation, vol. 3, no. 1, p. 41-60 2) http://www.flickr.com/photos/plant_diversity/3921998862/(Photo Source)TCE and PCE and breakdown products (trichloroacetic acid) were detected in branch tissue of trees planted in contaminated soil in less than a year. TCE and PCE present in trees down gradient of plume after 2 yrs. USDA Hardiness Zones. 6b to 8a.NNN
Triticum aestivumCommon WheatIMG_6803CommonWheat.jpgStrontiumAccumulatorPhytoextraction1) Joseph L. Fiegl, Bryan P. McDonnell, Jill A. Kostel, Mary E. Finster, and Dr. Kimberly Gray, Northwestern University 2) http://www.flickr.com/photos/dag_endresen/4190570128/ (Photo Source) 3) Salehi-Lisar SY, Deljoo S, Harzandi AM. Fluorene and Phenanthrene Uptake and Accumulation by Wheat, Alfalfa and Sunflower from the Contaminated Soil. Int J Phytoremediation. 2015;17(12):1145-1152. doi:10.1080/15226514.2015.1045123 4)Zhao H, Guan Y, Qu B. PFCA uptake and translocation in dominant wheat species (Triticum aestivum L.). Int J Phytoremediation. 2018;20(1):68-74. doi:10.1080/15226514.2017.1337066 5) Shtangeeva I, Perämäki P, Niemelä M, Kurashov E, Krylova Y. Potential of wheat (Triticum aestivum L.) and pea (Pisum sativum) for remediation of soils contaminated with bromides and PAHs. Int J Phytoremediation. 2018;20(6):560-566. doi:10.1080/15226514.2017.1405375 6) Qi L, Qin X, Li FM, et al. Uptake and distribution of stable strontium in 26 cultivars of three crop species: oats, Hardiness zone 6-7.NNN
Tulbaghia violaceaSociety GarlicPetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Perennial, Bulb, Fern. hardiness zones: 7 - 11NNN
Typha angustifoliaNarrow-leaf cattailAtrazineAccumulator/Tolerant1) Chayapan P, Kruatrachue M, Meetam M, Pokethitiyook P. Effects of Amendments on Growth and Uptake of Cd and Zn by Wetland Plants, Typha angustifolia and Colocasia esculenta from Contaminated Sediments. Int J Phytoremediation. 2015;17(9):900-906. doi:10.1080/15226514.2014.989310 2) (Phyto Textbook) Marecik, R., Bialas, W., Cyplik, P., Lawniczak, L., and Chrzanowski, L. 2012. Phytoremediation Potential of Three Wetland Plant Species Toward Atrazine in Environmentally Relevant Concentrations. Polish Journal of Environmental Studies. 21 (3), pp. 697-702.
Typha latifolia Broad-Leaved CattailBroadLeavedCattailBroadLeavedCattail.jpgLandfill leachateAccumulator/TolerantRhizodegradation, Phytodesalination, Phytostabilization1) The University of Texas. http://wildflower.org/explore/ 2) April 2003, Jeremiah Knuth, Department of Civil Engineering, Colorado State University.http://rydberg.biology.colostate.edu/Phytoremediation/2003/Knuth/home.htm • McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 3) USDA NRCS Plant Materials Center, Manhattan, Kansas & Kansas State University, Forestry Researchhttp://plants.usda.gov/factsheet/pdf/fs_sani.pdf (Source for Nickel, PAH, and Silver) 4) http://www.flickr.com/photos/52421717@N00/3687555600/ (Photo Source) 5) (Phyto Textbook) Marecik, R., Bialas, W., Cyplik, P., Lawniczak, L., and Chrzanowski, L. 2012. Phytoremediation Potential of Three Wetland Plant Species Toward Atrazine in Environmentally Relevant Concentrations. Polish Journal of Environmental Studies. 21 (3), pp. 697-702.rn 6Hardiness zone 2-11NNN
Typha latifolia L. CattailCattailCattail.jpgArsenic, Lead, PlutoniumHyperaccumulator Phytoextraction of Arsenic, Phytostablization of Arsenic and Lead1) http://wikipedia.org/wiki/hyperaccumulators_table_%E2%80%93¬¬¬_3- Lead, plutonium 2) U.S Environmental Protection Agency (EPA). Phytoremediation field studies database for chlorinated solvents, pesticides, explosives, and metals. http://www.afcee.af.mil/shared/media/document/AFD-071130-018.pdf (Lead and Arsenic source) 3) http://www.flickr.com/photos/salim/175848879/ (Photo Source) Hardiness zone 3NNN
Typha angustifoliaNarrow Leaved CattailNarrowLeavedCattailNarrowLeavedCattail.jpgAmmonia, Nitrate, NitrogenN/AN/A1) Heronswood (2011). www.heronswood.com/index.cfm 2) http://www.flickr.com/photos/rusty_clark/5897712973/ (Photo Source)Woody Plant. Many wetland and several upland species. High wildlife value for waterfowl and songbirds. Hardiness Zones: 3-11NNN
Ulex europaeusGorseLead (highest BF)AccumulatorPhytostabilization(Phyto Textbook) Gomes, P., Valente, T., Pamplona, J., Sequeira Braga, M. A., Pissarra, J., Grande Gil, J.A., and De La Torre, M.L. 2013. Metal uptake by native plants and revegetation potential of mining sulfide-rich waste-dumps. International Journal of Phytoremediation 16, pp. 1087-1103.
Urochlea brizantha cvs. Xaraes and MaranduPalisade grassZincAccumulatorPhytoextractionNardis BO, Silva EB, Grazziotti PH, Alleoni LRF, Melo LCA, Farnezi MMM. Availability and zinc accumulation in forage grasses grown in contaminated soil. Int J Phytoremediation. 2018;20(3):205-213. doi:10.1080/15226514.2017.1365347
Urtica proceraTall NettleTallNettleTallNettle.jpgPolychlorinated Biphenyl (PCB), Polycyclic Aromatic Hydrocarbon (PAH)N/ARhizodegradation1) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 2)http://www.flickr.com/photos/lacatholique/5591428042/(Photo Source)USDA plant hardiness zones 4 to 8.NNN
Uvaria chamaeFinger rootPetroleum hydrocarbons Accumulator/TolerantPhytodegredationAnyasi RO, Atagana HI. Profiling of plants at petroleum contaminated site for phytoremediation. Int J Phytoremediation. 2018;20(4):352-361. doi:10.1080/15226514.2017.1393386
Vallisneria natansStraight VallisneriaArsenicAccumulatorIndicatorChen G, Liu X, Brookes PC, Xu J. Opportunities for Phytoremediation and Bioindication of Arsenic Contaminated Water Using a Submerged Aquatic Plant:Vallisneria natans (lour.) Hara. Int J Phytoremediation. 2015;17(1-6):249-255. doi:10.1080/15226514.2014.883496
Vallisneria natans HaraArsenic, Cadmium, Copper, Nickel, Lead, ZincHyperaccumulatorLu G, Wang B, Zhang C, et al. Heavy metals contamination and accumulation in submerged macrophytes in an urban river in China. Int J Phytoremediation. 2018;20(8):839-846. doi:10.1080/15226514.2018.1438354
Vallisneria spiralisTape GrassCadmium, Chromium, Copper, LeadAccumulator Rhizodegradation, Phytoextraction1) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf Accumulator of radionuclides. Native to Europe and North Africa. Widely cultivated in the aquarium trade.NNN
Verbasam olympicumMulleinNickelAccumulator/TolerantAkpinar, Ay?egül, et al. “Ni-Induced Changes in Nitrate Assimilation and Antioxidant Metabolism OfVerbascum OlympicumBoiss.: Could the Plant Be Useful for Phytoremediation or/and Restoration Purposes?” International Journal of Phytoremediation, vol. 17, no. 6, 2014, pp. 546–555., doi:10.1080/15226514.2014.922926.
Veronica spicataVeronica spicataPetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Perennial, Bulb, Fern. Variety: Sunny Blue Border. USDA Hardiness Zone 6-9NNN
Vetiveria nigritanaBlack VetivergrassChromium, Zinc, Lead, Iron, Manganese, MagnesiumAccumulatorEvapotranspiration?Badejo AA, Sridhar MK, Coker AO, Ndambuki JM, Kupolati WK. Phytoremediation of Water Using Phragmites karka and Veteveria nigritana in Constructed Wetland. Int J Phytoremediation. 2015;17(9):847-852. doi:10.1080/15226514.2014.964849
Vetiveria zizanioidesVetiverThalliumAccumulatorPhytoextractionSasmaz M, Akgul B, Y?ld?r?m D, Sasmaz A. Bioaccumulation of thallium by the wild plants grown in soils of mining area. Int J Phytoremediation. 2016;18(11):1164-1170. doi:10.1080/15226514.2016.1183582
Viburnum awabukiViburnumCopper, Lead, CadmiumAccumulator/TolerantKang W, Bao J, Zheng J, Xu F, Wang L. Phytoremediation of heavy metal contaminated soil potential by woody plants on Tonglushan ancient copper spoil heap in China. Int J Phytoremediation. 2018;20(1):1-7. doi:10.1080/15226514.2014.950412
Viburnum obovatum dentataCompact Walter's ViburnumPetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Shrub. Hardiness zone 6-9.NNN
Viburnum odoratissimumSweet ViburnumPetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Shrub. Variety: Spring Bouquet. USDA hardiness zones: 9 through 11.NNN
Vicia AmericanaAmerican VetchAmericanVetchAmericanVetch.jpgNitrogen, Phosphorus, PotassiumN/AN/A1) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 2) http://www.flickr.com/photos/joannej/5878979763/(Photo Source) Process: Uptake, Growth Rate: Moderate, Mature height of 1.3’; Duration, Growth Habit: Vine, Herb/Forb, Drought Tolerance: High; Moisture Use: Low; Salinity Tolerance: None; Shade Tolerance: Intolerant; Habitat: Fields, thickets, and open woods; prNNN
Vicia fabaHorse Bean HorseBeanHorseBean.jpgAluminumAccumulatorN/A1) Grauer & Horst 1990; McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf. pg 891 2) http://www.flickr.com/photos/37226114@N02/3733186965/(Photo Source) A-100 milligrams per kilogram of dry weight. USDA Hardiness Zone: 4 to 11NNN
Vicia grandifloraVetchVetchVetch.jpgAluminumN/AN/A1) McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 2) http://www.flickr.com/photos/badalley/3692296433/ (Photo Source)Uptakes nutrients and metalsNNN
Vigna mungoBlack gramChromiumTolerantPhytoextractionPadmapriya S, Murugan N, Ragavendran C, Thangabalu R, Natarajan D. Phytoremediation potential of some agricultural plants on heavy metal contaminated mine waste soils, salem district, tamilnadu. Int J Phytoremediation. 2016;18(3):288-294. doi:10.1080/15226514.2015.1085832
Vigna radiataMung beanZinc, Copper, CadmiumAccumulatorMurtaza G, Javed W, Hussain A, Qadir M, Aslam M. Soil-applied zinc and copper suppress cadmium uptake and improve the performance of cereals and legumes. Int J Phytoremediation. 2017;19(2):199-206. doi:10.1080/15226514.2016.1207605
Vinca rose w/ Bacillus megateriumVincaNickelTolerantPhytoextractionKhan WU, Ahmad SR, Yasin NA, Ali A, Ahmad A, Akram W. Application of Bacillus megaterium MCR-8 improved phytoextraction and stress alleviation of nickel in Vinca rosea. Int J Phytoremediation. 2017;19(9):813-824. doi:10.1080/15226514.2017.1290580
ViolaViolaArsenic, Antimony, ThaliumAccumulatorPhytoaccumulation(Phyto Textbook) Baceva, K., Stafilov, T., and Matevski, V. 2013. Bioaccumulation of heavy metals by endemic Viola species from the soil in the vicinity of the As-Sb-Tl Mine "Allchar", Republic of Macedonia. International Journal of Phytoremediation 16, pp. 347-365.
Viola spp. VioletVioletViolet.jpgCadmiumAccumulator of Cadmium, HyperaccumulatorPhytoextraction1) Institute for Environmental Research and education (IERE). (2003 January). Vashon Heavy Metal Phytoremediation Study Sampling and Analysis Strategy (DRAFT). http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 2)http://www.flickr.com/photos/abysswriter/4876669851/ (Photo Source)Perennial flowering plants with many varieties. Has been found to accumulate high concentrations of metals. USDA hardiness zones 4 through 9NNN
Vitex trifolia Linn. var. simplicifolia ChamSimplelead ChastetreeZinc, Lead ,CopperAccumulatorShi X, Chen YT, Wang SF, et al. Phytoremediation potential of transplanted bare-root seedlings of trees for lead/zinc and copper mine tailings. Int J Phytoremediation. 2016;18(11):1155-1163. doi:10.1080/15226514.2016.1189399
Vossia cuspidata (Roxb.) GriffHippo GrassChromium, Copper, Lead, Aluminum, Cadmium, ZincAccumulatorPhytostabilizationGalal TM, Gharib FA, Ghazi SM, Mansour KH. Phytostabilization of heavy metals by the emergent macrophyte Vossia cuspidata (Roxb.) Griff.: A phytoremediation approach. Int J Phytoremediation. 2017;19(11):992-999. doi:10.1080/15226514.2017.1303816
Washingtonia filiferaCalifornia Fan PalmPetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Tree. Hardiness zone 8-11.NNN
Wigandia urensStinging Wigandia, Fiberglass PlantZincAccumulatorPhytoaccumulation(Phyto Textbook) Cortes-Jimenez, E., Mugica-Alvarez, V., Gonzalez-Chavez, M., Carrillo-Gonzalez, R., Gordillo, M., and Mier, M. 2013. Natural revegetation of alkaline tailing heaps at Taxco, Guerrero, Mexico. International Journal of Phytoremediatio15 (2), pp. 127-141.
Wrightia arboreaWoolly Dyeing RosebayArsenicAccumulatorTolerantKumar D, Singh VP, Tripathi DK, Prasad SM, Chauhan DK. Effect of Arsenic on Growth, Arsenic Uptake, Distribution of Nutrient Elements and Thiols in Seedlings of Wrightia arborea (Dennst.) Mabb. Int J Phytoremediation. 2015;17(1-6):128-134. doi:10.1080/15226514.2013.862205
Xanthium strumariumRough cockleburSalinityAccumulatorPhytoextractionDevi S, Nandwal AS, Angrish R, Arya SS, Kumar N, Sharma SK. Phytoremediation potential of some halophytic species for soil salinity. Int J Phytoremediation. 2016;18(7):693-696. doi:10.1080/15226514.2015.1131229
Yucca hesperaloe parvifoliaRed YuccaPetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Shrub. USDA Hardiness Zone: 7-10NNN
Yucca recurvifoliaYuccaPetroleumTolerantN/A1) Analysis of Phytoscapes Species for BP Retail Sites. Kim Tsao. David Tsao, Ph.D. BP Group Environmental Management Company. 28 March 2003Shrub. Variety: Soft Leaf Yucca. Cold hardiness zones: 7 - 9.NNN
Zea MaizeMaizeCopperAccumulator, HyperaccumulatorPhytoextraction, Phytodegradation1) (Phyto Textbook) Mukherjee, I., and Kumar, A. 2012. Phytoextraction of endosulfan a remediation technique. Bulletin of Environmental Contamination and Toxicology 88 (2), pp. 250-254. 2) Broadhurst CL, Chaney RL, Davis AP, et al. Growth and Cadmium Phytoextraction by Swiss Chard, Maize, Rice, Noccaea caerulescens, and Alyssum murale in Ph Adjusted Biosolids Amended Soils. Int J Phytoremediation. 2015;17(1-6):25-39. doi:10.1080/15226514.2013.828016 3) Putwattana N, Kruatrachue M, Kumsopa A, Pokethitiyook P. Evaluation of organic and inorganic amendments on maize growth and uptake of cd and zn from contaminated paddy soils. Int J Phytoremediation. 2015;17(1-6):165-174. doi:10.1080/15226514.2013.876962 4) Liao, Changjun, et al. “Accumulation of Hydrocarbons by Maize (Zea MaysL.) in Remediation of Soils Contaminated with Crude Oil.” International Journal of Phytoremediation, vol. 17, no. 7, 2015, pp. 693–700., doi:10.1080/15226514.2014.964840. 5) Fu, Yanzhao, et al. “Permeability of
Zea MaizeCommon CornCommonCornCommonCorn.jpgArsenic, Cadmium, Cobalt, Formaldehyde, Lead, Nickel, Polychlorinated Biphenyl (PCB), Polycyclic Aromatic Hydrocarbon (PAH)Accumulator, HyperaccumulatorRhizodegradation1)McCutcheon, S.C., & Schnoor, J.L. (Eds.). (2003). Phytoremediation: Transformation and Control of Contaminants. Hoboken, New Jersey: Wiley-Interscience, Inc. http://www.superorg.net/archive/proposal/plant%20species%20phyto.pdf 2) http://www.flickr.com/photos/msvg/4962390365/ (Photo Source)Accumulates lower ring PAH’s much more efficiently than the complex 4 or 5 ring PAH varieties. Corn also brings a unique visual element to the design as it looks unlike any other plants on the site. Hardiness zone 3-9.NNN
Zostera marina Eel GrassEelGrassEelGrass.jpgCadmiumN/AN/A1) McCutcheon & Schnoor 2003, Phytoremediation. New Jersey, John Wiley & Sons pg 891 2) http://www.flickr.com/photos/pembleton/2884446011/(Photo Source)37 records of plants; origin IndiaNNN

The table below lists the contaminant and type

NameType
AcetoneOrganics
AlcoholOrganics
AluminumMetals
Ammonia
AnthraceneOrganics
ArsenicMetals
AtrazineOrganics
BariumRadioactive Toxins
Bentazon
BenzeneOrganics
BerylliumMetals
BifenthrinRadioactive Toxins
BoronMetals
CadmiumMetals
CalciumMetals
CarbonMetals
Carbon DioxideOrganics
Carbon MonoxideOrganics
CesiumRadioactive Toxins
Chlorinated Solvents
Chloroform
ChromiumMetals
CobaltRadioactive Toxins
CopperMetals
CreosoteOrganics
Diesel FuelBiodiesels and Oils
Endosulfan Sulfate
EthanolOrganics
Ethyl
Flourine
FormaldehydeOrganics
Fuel OilBiodiesels and Oils
GoldMetals
Halogenated Volatile Organic Compounds (HVOC'S)
HydrocarbonsHydrocarbon
IronMetals
LeadMetals
ManganeseMetals
MercuryMetals
NickelMetals
Nitrate
NitrogenOrganics
Organic SolventsOrganic Solvent
PalladiumMetals
Perchloroethylene (PCE)Organics
PetroleumBiodiesels and Oils
PhosphateOrganics
PhosphorusOrganics
Picloram
PlutoniumRadioactive Toxins
Polychlorinated Biphenyl (PCB)Organics
Polycyclic Aromatic Hydrocarbon (PAH)
PotassiumMetals
SeleniumMetals
SilverMetals
SodiumRadioactive Toxins
StrontiumRadioactive Toxins
StyreneOrganics
TolueneOrganics
TriazineOrganics
Trichloroethylene (TCE) and by-products
TritiumRadioactive Toxins
UraniumRadioactive Toxins
VanadiumMetals
Vinyl Chloride
XyleneOrganics
ZincRadioactive Toxins